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We propose the framework generalized supersoft supersymmetry breaking. “Supersoft” models, with
D-type supersymmetry breaking and heavy Dirac gauginos, are considerably less constrained by the LHC
searches than the well studied MSSM. These models also ameliorate the supersymmetric flavor and CP
problems. However, previously considered mechanisms for obtaining a natural size Higgsino mass
parameter (namely, μ) in supersoft models have been relatively complicated and contrived. Obtaining a
125 GeV for the mass of the lightest Higgs boson has also been difficult. Additional issues with the
supersoft scenario arise from the fact that these models contain new scalars in the adjoint representation of
the standard model, which may obtain negative squared-masses, breaking color and generating too large a
T parameter. In this Letter, we introduce new operators into supersoft models which can potentially solve
all these issues. A novel feature of this framework is that the new μ term can give unequal masses to the up
and down type Higgs fields, and the Higgsinos can be much heavier than the Higgs boson without fine-
tuning. However, unequal Higgs and Higgsino masses also remove some attractive features of supersoft
supersymmetry.
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Supersymmetry (SUSY) at the electroweak scale offers
potential solutions to the gauge hierarchy and dark matter
problems, along with a route towards a grand unified theory
(GUT)[1]. A crucial ingredient is the presence of the
Higgsinos (the superpartners of the Higgs bosons) with
masses at the electroweak scale. At first glance, this does
not appear to be a critical issue, since a supersymmetric
Higgs and Higgsino mass term, namely “μ”, is allowed. In
fact, issues regarding Higgsino masses are often trivialized
by evoking the argument that due to the nonrenormalization
of the superpotential, any value of μ is technically natural.
However, this response does not address the depth of the
problem. The μ parameter needs to be of the order of the
electroweak mass scale, which, in a supersymmetric theory,
is not an input parameter in the ultraviolet (UV), but is
rather generated in the infrared (IR), after the theory is
renormalized down to the IR, and is naturally at the scale of
the superpartner masses [3–7]. These masses, in turn,
are functions of the two fundamental mass scales of the
theory: (i) the scale of the SUSY breaking vacuum expect-
ation value (VEV) in the hidden sector, and (ii) the mass
scale associated with the messenger mechanism which
connects the hidden sector and the visible sector fields. In
models of dynamical supersymmetry breaking (DSB),
the scale of SUSY breaking is generated via dimensional
transmutation [8–11]. The messenger scale is often the
Planck scale [7,12–18], or the GUT scale [3,15,18], or
can be the scale of DSB [19]. Inclusion of a bare mass term,
which is of the order of the electroweak scale by pure

coincidence makes the theory much less elegant and
plausible.
The μ problem is often discussed in the context of the

minimal supersymmetric standard model (MSSM), which
is the most well-studied incarnation of weak scale SUSY.
Note that the MSSM is the weak scale effective theory of an
underlying supersymmetric theory, with SUSY being
spontaneously broken by the nonzero VEV of the F
component of a hidden sector chiral superfield. In this
framework, a robust solution to the μ problem is provided
by the Giudice-Masiero mechanism [20], whereby a
manifestly supersymmetric higher dimensional operator
involving the Higgs fields and the SUSY breaking hidden
sector superfield becomes a μ term. This mechanism
assures that the μ term is naturally of the order of the
superpartner masses. Note that the SUSY breaking terms of
the MSSM are known as “soft” [21–23], because the
resulting theory has only logarithmic UV divergences.
Such logarithmic divergences however mean that the soft
terms are sensitive to short distance flavor and CP violating
physics which could potentially lead to problematic flavor-
changing neutral currents (FCNC) [23,24], and new phases
that could make detectible and potentially excessive con-
tributions to electric dipole moments [25–30]. More
recently, the accumulated null observations have put severe
constraints on the MSSM, the most serious of which arises
from the lack of observation of excess events with jets þ
missing energy at the LHC. In weak scale SUSY, events
with jets þ missing energy are produced mostly due to the
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production of squarks and gluinos, which subsequently
decay to jets and the lightest supersymmetric particles
(LSPs). These cross sections are maximized for degenerate
squarks and gluinos, which is a generic feature of the
MSSM. Within its framework, squarks receive loop sup-
pressed but log enhanced contribution from the gluino mass
as the theory is renormalized down to the IR. Except in
the case where the squarks start out to be hierarchically
heavier than the gauginos at the UV (such as in split-SUSY
[31–33]), the gluino mass is always comparable to the
squark masses in the MSSM. Satisfying experimental
constraints, therefore, requires the raising of the mass scale
of all colored particles. Also note that, because of the
restricted form of the Higgs potential in the MSSM, the top
squarks are now required to be very heavy, with mass of
order a TeVor more in order to obtain 125 GeV for the mass
of the Higgs boson. Since renormalization of the soft Higgs
mass-squared term is proportional to the top squark mass, a
heavy top squark gives rise to a finely tuned cancellation in
the Higgs mass squared parameter. Thus, in the MSSM,
with SUSY breaking parameters run down from a high
scale, SUSY’s promise to explain the origin of the weak
scale without fine-tuning, is fading in the light of the LHC
Higgs boson discovery and in the absence of any SUSY
discovery [34–37].
An alternative way to break supersymmetry is via a VEV

for the D component of a hidden sector real superfield
[26,40]. Such symmetry breaking may be mediated to the
visible sector via a class of operators known as “supersoft”,
as they do not induce even logarithmic ultraviolet diver-
gences in squark and slepton masses [41]. The most
important previously considered supersoft operators are
those giving rise to Dirac gaugino masses [26,40,42,43]. In
supersoft models, the radiatively generated squark and
slepton masses are finite, flavor symmetric, positive, UV
insensitive, and light compared to the gaugino masses [41].
Therefore, these models additionally avoid the flavor-
changing neutral current, naturalness, and CP difficulties
of the MSSM. A heavy gluino suppresses processes such as
gluino pair production and squark-gluino production. Also,
the pair production of squarks is reduced as the T-channel
diagrams involving gluinos do not contribute. Therefore,
Dirac masses allow for a reduction in the number of
events with jets þ missing energy for a given squark mass
[34,44–51]. The μ problem is, however, severe in supersoft
models. The Giudice-Masiero mechanism does not work,
since SUSY breaking is not mediated by the F term of a
chiral superfield, but by the D term of a real superfield
instead. A solution was proposed in Ref. [41], where the
conformal compensator generates masses for Higgsinos. To
generate the right Higgsino masses, however, this approach
requires a conspiracy among the SUSY breaking scale, the
messenger scale, and the Planck scale. One could reintro-
duce the gauge singlet chiral superfield with an F term and
use the Giudice-Masiero mechanism. However, such a

gauge singlet field may lead to power law UV sensitivity,
and to additional flavor and CP violating SUSY breaking
operators; thus spoiling the supersoft solution to the SUSY
FCNC and CP problems [41,52,53]. It is also conceivable
to generate a μ term via a supersymmetric VEVof a singlet
superfield, again bringing in the possibility of new power
law divergences in the singlet potential. If the singlet carries
discrete symmetries, then there could be cosmological
problems with the production of domain walls associated
with breaking of the discrete symmetries. Another potential
problem with supersoft models is that the D term con-
tribution to the Higgs quartic coupling vanishes [41], and
accommodating a 125 GeV Higgs boson becomes difficult.
In this Letter, we propose a complete and viable

framework of weak scale SUSY, namely generalized
supersoft supersymmetry, where all SUSY breaking effects
are sourced by the D component of a real field or operator
from the hidden sector. We include a new class of D term
mediated soft (but not necessarily supersoft) operators that
allow for a new solution to the μ problem, restore the Higgs
quartic coupling, and provide considerable modification to
supersoft phenomenology.
The visible sector of our supersoft model includes the

superfields of the MSSM, as well as additional chiral
superfields Σi in the adjoint representation of the SM gauge
groups. The fermionic components of Σi, (namely, ψ i), will
obtain Dirac masses with the gauginos (λi). Supersymmetry
is broken by a D term of a hidden sector real superfield V 0

D≡ 1

8
hD2D̄2V 0i > 0: ð1Þ

The messenger sector that connects the visible and hidden
sector is assumed to be very heavy, and we may integrate it
out at the messenger scale Mm, which, in turn, could be as
high as the Planck scale. The operators generating the
gaugino masses are [43]:

Z
d2θ

w1;i

4

D̄2DαV 0

Mm
Wi;αΣi⟶MDi

λiψ i;

where MDi
¼ w1;igiffiffiffi

2
p D

Mm
: ð2Þ

In the above, Wi;α is the field-strength superfield of ith SM
gauge group, with α being the spinor index. Mm is the
messenger scale, w1 are dimensionless coupling constants,
and D and D̄ are superderivatives.
An additional class of supersoft terms gives mass to the

scalar components of the Σi fields:

Z
d2θ

w3;i

4

ð1
4
D̄2DV 0Þ2
M2

m
Σ2
i⟶

�
w3;i

2

D2

M2
m

�
σ2i
2
: ð3Þ

In Eq. (3), σi denotes the scalar components of the Σi chiral
superfields. Since these operators are generated at the
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messenger scale, the scalar masses are of the order of the
gaugino masses. Note that even though the gaugino mass
operators in Eq. (2) give rise to masses for the real
components of σ fields, Eq. (3) remains the only source
of masses for the imaginary components at tree level. Also,
given the fact that the squared masses generated in Eq. (3)
are linear in the coupling constants w3;i, these can be
negative, giving rise to nonzero VEV for the color octet
field, thus breaking color. The gaugino mediated squared
masses for these fields are positive. However, as explained
before, these masses are loop suppressed and not log
enhanced and are, therefore, small with respect to the
masses in Eq. (3). In gauge mediated supersoft models,
some intricate model building is required to avoid negative
masses squared for some of the adjoint scalars [41,54–56].
Both sets of terms are invariant under the hidden sector
gauge symmetry V 0 → V 0 þ Λþ Λ†, where Λ is a chiral
superfield. As discussed in Ref. [41], this hidden sector
gauge invariance is key to the absence of UV-sensitive
contributions to supersymmetry breaking scalar masses.
In this Letter, we propose a new class of operators which

ameliorates all of the previously mentioned problems in
this framework:

−
Z

d2θ
1

4
w2;Φ1Φ2

D̄2ðDαV 0DαΦ1Þ
Mm

Φ2: ð4Þ

In Eq. (4), Φ1 and Φ2 are visible sector chiral superfields
such that the bilinear Φ1Φ2 is a gauge singlet. Examples of
such bilinear gauge singlet in theweak scale supersymmetry
are HuHd and Σ2

i . Note that the operators as expressed in
Eq. (4) are manifestly chiral (and part of the superpotential)
because of the fact that D̄3 ¼ 0. The terms in Eq. (4) can
be given a gauge invariant form (but not supersymmetric),
since if V 0 is set equal to its VEV, we find:

D̄2ðDαV 0DαΦ1Þ ¼ ðD̄2DαV 0ÞDαΦ1 þ � � � ; ð5Þ

where � � � represent extra terms that do not contribute to the
superpotential.Whenwe treat our operators containingV 0 as
a spurion, since it can come either from a supersymmetric or
a gauge invariant operator, it will only generate gauge
invariant corrections to SUSY breaking operators, and
hence, cannot generate terms which require nongauge
invariant counterterms. There are however other spurionic
terms which share the feature of being either supersym-
metric or gauge invariant, which can contribute to squark
and sleptonmasses and nonsupersymmetric trilinears, so the
new operators are not necessarily supersoft. One important
aspect of this operator is that ordering ofΦ1 andΦ2 in Eq. (4)
matters in case these represent different fields. Expanding
Eq. (4), we find masses for all the fermionic components of
Φ1 and Φ2, and for the scalar components of Φ2 only. The
scalar components of Φ1 remain massless.

μϕ2

2
ð ~ϕ1

~ϕ2 − 2Fϕ1
ϕ2Þ →

μϕ2

2
~ϕ1

~ϕ2 þ jμϕ2
j2jϕ2j2;

where μϕ2
¼ 2w2;Φ1Φ2

D
Mm

; ð6Þ

where ϕi, ~ϕi, and Fϕi
are the scalar, fermion, and auxiliary

components of the chiral multiplet Φi respectively.
A nonzero value of either or both of w2;HuHd

, or w2;HdHu

generates masses for the Higgsinos. A nice feature of these
Higgsino masses is that the masses are naturally of the
order of the gaugino masses and are sourced by a single
mass scale (i.e., VEV of the D component of the hidden
sector field). These new operators are also phenomeno-
logically important. Equation (6) implies that unlike the
conventional μ term, w2;HuHd

only gives rise to down-type
Higgs soft masses. The general contributions to the Higgs
sector from these unconventional operators (with both
w3;HuHd

and w3;HdHu
) are then characterized by not one μ

parameter, but rather by two separate mass parameters
(namely, μu and μd):

1

2
ðμu þ μdÞ ~Hu

~Hd þ jμuj2jhuj2 þ jμdj2jhdj2: ð7Þ

Only in the limit μu ¼ μd ¼ μ, the mass terms become
identical to that of the conventional μ term. A large mass
term for Hd, will result in large tan β but a potentially
natural spectrum. It is, therefore, possible to consider a
model in which the Higgsinos and additional scalar bosons
are substantially heavier than the Higgs bosons without
fine-tuning. This setup also challenges the conventional
wisdom regarding fine-tuning in models of weak scale
SUSY. Since there is no observable that directly gives a
measure of the messenger scale of the theory (and the size
of the large logarithmic contribution to the Higgs mass),
measuring masses of the Higgsinos seems to be the best
way of estimating the size of cancellation needed in order to
produce the electroweak scale. Even though exceptions
were constructed, where the cancellation is the result of
dynamics [57–59], not fine-tuning, (therefore, the naive
interpretation of Higgsino masses being the measure of
fine-tuning is incorrect) the belief remains widespread.
Equation (7) provides an explicit example, where the
Higgsino mass can be made large (because of large μd),
without contributing to soft mass of the up-type Higgs
boson. However, too large a ðjμdj2 − jμuj2Þ, generates a log
divergent, though loop suppressed Hypercharge D term,
which, if too large, can give some scalars tachyonic masses
[60]. Also, μu ≠ μd, can give rise to additional log divergent
contributions to scalar soft masses2. For consistency, we
assume that all terms which are needed for renormalization
are present, and so, in the case μu ≠ μd, squark and slepton
masses squared must also receive non supersoft contribu-
tions, however such terms can naturally be smaller than the
supersoft contributions.
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The operator in Eq. (4), with Φ replaced by the Σi fields,
can also provide potential solutions associated with the
scalar adjoints. Operators with w3;Σ2

i
generate positive

definite squared masses for the scalar components and
Majorana masses for the fermionic components of the Σi
fields.

1

2
MNi

ψ2
i þ

1

2
jMNi

j2jσij2; MNi
¼ 2w2;Σ2

i

D
Mm

: ð8Þ

Color breaking can be easily avoided (at tree level) for large
enough w3;3. As mentioned earlier, the gaugino mediated
contributions to scalar soft masses at one loop are already
positive definite.
An additional effect of the large masses for the σ fields is

the (partial) recovery of the Higgs quartic coupling. Take,
for example, the on shell Lagrangian in the presence of the
σ2 fields, and the effective Lagrangian after the real
components of σ2 are integrated out:

Lon shell ⊃
1

2

�
2MD2

σ2R þ
g22
2

X
k
q�ktaqk

�
2

þ 1

2
MN2

ðσ22R þ σ22IÞ; ð9Þ

Leff ⊃
M2

N2

M2
N2

þ 4M2
D2

g22
8

X
k

ðq�ktaqkÞ2: ð10Þ

We use the notation σ2R and σ2I to designate the real and the
imaginary parts of σ2. Equations (9) and (10) are also useful
for demonstrating the fact that unlike in the MSSM, D
terms of the gauge fields do not contribute to the Higgs
quartic in supersoft SUSY. Since the mass term MN2

gets
generated only by the operator in Eq. (8), the supersoft limit
can be achieved by taking MN2

→ 0, when the D term
containing the Higgs quartic vanishes. In the opposite limit,
namely MN2

≫ MD2
, one recovers the full MSSM strength

quartic at the tree level.
The gauginos are no longer Dirac particles once the

operators of Eq. (8) are included. For instance, the gluinos ~g
and their Dirac partners ψ3 obtain masses from two
independent sources:

Lgluinos ⊃
1

2
ð ~g ψ3 Þ

�
0 MD3

MD3
MN3

��
~g

ψ3

�
: ð11Þ

Based on the relative strength of the Dirac mass of gluino
and the Majorana mass of ψ3, three qualitatively distinct IR
spectra emerge: (i) MN3

≫ MD3
: the gluino mass matrix

has the “seesaw” texture. The ψ3 field (in fact, the entire Σ3

superfield) is integrated out at the scale MN3
. The resultant

light gluino (light with respect to MN3
) is a Majorana

fermion with a mass inversely proportional toMN3
. The IR

effective theory below MN3
is the MSSM, with an added

feature of all scalar masses being still supersoft—in the
sense that these masses do not get big log contribution from
UV scales (although they are sensitive to logMN3

).
(ii) MN3

≪ MD3
: gluinos are “pseudo-Dirac”, with two

nearly degenerate Majorana color octet fermions and a
small mass splitting. (iii) MN3

∼MD3
: gluinos are mixed

Majorana-Dirac [61], with two Majorana color octet
fermions and a mass splitting of order their mass. The
squark–quark–(lighter) gluino coupling deviates from the
usual strong coupling constant (αs → αscos2θg, where θg is
the mixing angle in the gluino mass matrix). The associated
squark-gluino production cross section, for example, thus
contains an additional factor of cos2 θg which deviates from
one at the leading order.
The neutralino and chargino mass matrices are more

complicated, and we leave a complete description for future
work [62]. Here, we make a few remarks. In supersoft
SUSY, the gauginos, Higgsinos, and additional Higgs
bosons can naturally be substantially heavier than the
squarks and sleptons without fine-tuning. In fact, a charged
right-handed slepton is often predicted to be the lightest
supersymmetric particle (LSP) in supersoft models. This,
however, is problematic since a stable slepton is not
cosmologically viable. In models with a low messenger
scale, the gravitino becomes the LSP, thereby resolving this
issue by allowing the slepton to decay into a lepton and
gravitino. Depending on the gravitino mass and the
reheating scale after inflation, the gravitino may provide
a cold or warm dark matter candidate.
In the scenario we provide, a mostly binolike Majorana

fermion could be the LSP. If its mass is close to the mass of
the right-handed charged sleptons, then it can become a
thermal relic with the right density due to coannihilation
[63]. Consider the case, where MD1

≪ MN1
;MD2

;MN2
;

μu; μd. Since MD1
≪ MN1

, there is a potentially light mass
eigenstate which is mostly a binolike Majorana fermion,
which can be chosen to yield the right thermal relic
abundance. The right-handed charged slepton receives loop
suppressed and finite mass which, at one loop, is of the
order of ðg1=2πÞM2

N1
log ðMD1

=MN1
Þ=MD1

. We may, with-
out affecting naturalness, add flavor universal soft slepton
mass squared terms which are large enough that the right-
handed slepton mass is similar in size to the bino mass.
In summary, we have shown that adding a new class of

operators to models with supersoft supersymmetry break-
ing can offer a solution to the μ problem and have very
attractive consequences. Gluinos in these models can be
naturally heavy, several times the mass of the squarks,
while the remainder of the sub TeV superpartner spectrum
can be MSSM like, including the possibility of weakly
interacting massive particles dark matter. With a heavy
gluino, this scenario is less constrained by LHC searches
and low energy observables than the MSSM, while still
allowing a path towards unification and a dynamical
solution to the hierarchy problem.
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