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We provide a complete characterization of hydrodynamic transport consistent with the second law of
thermodynamics at arbitrary orders in the gradient expansion. A key ingredient in facilitating this analysis
is the notion of adiabatic hydrodynamics, which enables isolation of the genuinely dissipative parts of
transport. We demonstrate that most transport is adiabatic. Furthermore, in the dissipative part, only terms
at the leading order in gradient expansion are constrained to be sign definite by the second law (as has been
derived before).
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Introduction.—Hydrodynamics is the universal low
energy description at sufficiently high temperatures of
quantum systems near thermal equilibrium. The dynamical
fields are the intensive parameters that describe the near
thermal density matrix, viz., temperature T, chemical
potential μ, along with the fluid velocity (uμ; uμuμ ¼ −1),
which sets the local frame in which the state appears
thermal. The background sources are the metric gμν and
the flavor sources Aμ. The hydrodynamic state in a given
background is then completely characterized by a “thermal
vector" βμ and “thermal twist” Λβ defined by

B≡
�
βμ ¼ uμ

T
;Λβ ¼

μ

T
− βσAσ

�
: ð1Þ

The response to the background sources is encoded in the
energy momentum tensor ðTμνÞ and charge current ðJμÞ of
the theory given in terms of the hydrodynamic fields. The
dynamical equations are the statements of conservation.
In the presence of external sources and quantum anomalies
(incorporated by the inflow Hall currents Tμ⊥

H and J⊥H), one
has with Dμ ¼ ∇μ þ ½Aμ; ·�

∇νTμν ¼ Jν · Fμν þ Tμ⊥
H ; DνJν ¼ J⊥H: ð2Þ

Phenomenologically, a hydrodynamicist finds constitu-
tive relations that express the currents in terms of the fields.
The operators are tensors built out of B, the background
sources fgμν; Aμg, and their gradients, multiplied by trans-
port coefficients which are arbitrary scalar functions of T,
μ. A priori this “current algebra” formulation appears
simple, since classifying such unrestricted tensors is a
straightforward exercise in representation theory.
However, hydrodynamic currents should satisfy a further

constraint [1]—the second law of thermodynamics has to

hold for arbitrary configurations of the low energy

dynamics. In practice, one demands the existence of an
entropy current JμS with non-negative definite diver-
gence ∇μJ

μ
S ≥ 0.

At low orders in the gradient expansion it is not too hard
to implement the constraints by hand and check what the
second law implies; e.g., at one derivative order one finds
that viscosities and conductivities need to be non-negative
η; ζ; σ ≥ 0, which is physically intuitive. To date, no
complete classification has been obtained at higher orders,
though the impressive analyses of Refs. [2–4] come
quite close.
From a (Wilsonian) effective field theorist’s perspective,

this phenomenological current algebralike approach is
unsatisfactory. Not only is the entropy current not asso-
ciated with any underlying microscopic principle, but also
the origin of dynamics as conservation is obscure. A priori
a Wilsonian description for density matrices should involve
working with doubled microscopic degrees of freedom, in
the manner of the Schwinger-Keldysh or Martin-Siggia-
Rose-Janssen-deDominicis methods. But one has yet to
understand the couplings between the two copies (influence
functionals) allowed by the second law, which ought to
encode information about dissipation (and, curiously, also
anomalies [5]).
In this Letter we describe a new framework for hydro-

dynamic effective field theories and provide a complete
classification of transport. In particular, hydrodynamic
transport admits a natural decomposition into adiabatic
and dissipative components: the latter contribute to entropy
production, while the former do not. At low orders, terms
such as viscosities are dissipative; a major surprise is that
most higher order transport is adiabatic.
Adiabatic transport can be captured by an effective

action with not only Schwinger-Keldysh doubling of the
sources, but also a new gauge principle, Uð1ÞT Kubo-
Martin-Schwinger (KMS) gauge invariance, with a gauge
field AðTÞ. This symmetry implies adiabaticity, i.e., off-shell
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entropy conservation, providing thereby a rationale for JμS
(dissipative dynamics arise in the Higgs phase). We use this
to prove an eightfold classification of adiabatic transport.
Together with a key theorem from Ref. [3], we further argue
that dissipative hydrodynamic transport is constrained by
the second law only at leading order in gradients. In the
following, we will sketch the essential features of our
construction; details will appear in companion papers [6].
Adiabatic hydrodynamics and the eightfold

classification.—The key ingredient of our analysis that
enables the classification scheme is the notion of adiaba-
ticity. The main complications in hydrodynamics arise from
attempting to implement the second law of thermodynam-
ics on shell. Significant simplification can be achieved by
taking the constraints off shell. One natural way to do this is
to extend the inequality ∇μJ

μ
S ≥ 0 to an off-shell statement

by the addition of the dynamical equations of motion with
Lagrange multipliers [7]. Choosing the Lagrange multi-
pliers for the energy momentum and charge conservation to
be the hydrodynamic fields implies that

∇μJ
μ
S þ βμð∇νTμν − Jν · Fμν − Tμ⊥

H Þ
þ ðΛβ þ βλAλÞ · ðDνJν − J⊥HÞ ¼ Δ ≥ 0; ð3Þ

with Δ capturing the dissipation and the dot operator
denotes flavor index contraction.
While taking the second-law inequality off shell allows

us to ignore on-shell dynamics, one can obtain the most
stringent conditions by examining the boundary of the
domain where we marginally satisfy the constraint. We
define an adiabatic fluid as one where the off-shell entropy
production is compensated for precisely by energy momen-
tum and charge transport. We thus motivate the study of
the adiabaticity equation obtained from Eq. (3) by setting
Δ ¼ 0. We will refer to the set of functionals fJμS; Tμν; Jμg
that satisfy Δ ¼ 0 as the adiabatic constitutive relations.
Implications of adiabaticity were first studied in the

context of anomalous transport in Ref. [8] and are explored
in greater detail in Ref. [6]. In the following, we will
provide some of the salient results of our analysis and
explain how it helps with the taxonomy.
Intuitively, the notion of adiabaticity is an off-shell

generalization of nondissipativeness; imposing Eq. (2)
we learn that the entropy current has to be conserved on
shell. Moreover, apart from quantum anomalies encoded by
the Hall currents, the contributions at each order in the
gradient expansion can be decoupled. It is quite remarkable
that this corner of the hydrodynamic constitutive relations
is sufficient to delineate all the constraints on transport.
We will first outline different classes of solutions to the
adiabaticity equation (3), and then in the next section we
explain how it can be utilized for taxonomic purposes.
The adiabatic transport finds a natural classification into

eight primary classes; see Fig. 1. We emphasize that
adiabatic constitutive relations encode those transport

coefficients that never appear in the expression for entropy
production. Together with class D (dissipative), we exhaust
all forms of transport.
To understand the nomenclature and taxonomy, let us

start with class A, which is consists of transport fixed by the
quantum anomalies of the quantum field theory (QFT).
Such anomalous transport gives a particular solution to the
adiabaticity equation (3), cf. Ref. [8]—the anomalous Hall
currents can be viewed as inhomogeneous source terms.
This allows us to dispense with them once and for all and
focus thence on the nonanomalous adiabaticity equation.
The simplest solutions to Eq. (3) can be obtained by

restricting to hydrostatic equilibrium (class H). One sub-
jects the fluid to arbitrary slowly varying, time-independent
external sources fgμν; Aμg. The background time independ-
ence implies the existence of a Killing vector and gauge
transformation, K ¼ fKμ;ΛKg, with δKgμν ¼ δKAμ ¼ 0.
Identifying the hydrodynamic fields with these background
isometries βμ ¼ Kμ, Λβ ¼ ΛK solves Eq. (3). This infor-
mation can equivalently be encoded in a hydrostatic
partition function [9,10], which is the generating functional
of (Euclidean) current correlators. Varying this partition
function, we can then obtain a class of constitutive relations
that solve Eq. (3).
The partition function has two distinct components:

hydrostatic scalars HS and vectors HV . The transformation
properties refer to the transverse spatial manifold obtained
by reducing along the (timelike) isometry direction. The
scalars HS are terms one is most familiar with, e.g., the
pressure p as a functional of intensive parameters (which
now are determined by the background Killing fields). The
vectors Pσ inHV are both transverse to the Killing field and

FIG. 1 (color online). The eightfold classification of hydro-
dynamic transport.
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conserved on the codimension one achronal slice,
i.e., KσPσ ¼ ∇σPσ ¼ 0.
Hydrostatics fixes a part of the constitutive relations by

imposing relations between a priori independent transport
coefficients [9]. These relations (class HF) capture the fact
that nonvanishing hydrostatic currents expressed as inde-
pendent tensor structures in equilibrium arise from a single
partition function. More importantly, dangerous terms that
can produce sign-indefinite divergence of entropy current
are eliminated in class HF.
The second set of solutions of Eq. (3) is generated by

generalizing the scalar part of the partition function to time-
dependent configurations, similar to the Landau-Ginzburg
method. We call these Lagrangian (class L) solutions, since
one can find a local Lagrangian (or Landau-Ginzburg free
energy) of the hydrodynamic fields and sources,
L½βμ;Λβ; gμν; Aμ�. The currents are defined through stan-
dard variational calculus, which can be expressed after
suitable integrations by parts as

1ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi
−g

p
LÞ ¼ 1

2
Tμνδgμν þ Jμ · δAμ þ Thσδβσ

þ Tn · ðδΛβ þAσδβσÞ þ boundary terms;

ð4Þ

while the entropy density is defined as (note that JμS ¼ suμ)

s≡
�

1ffiffiffiffiffiffi−gp δ

δT

Z ffiffiffiffiffiffi
−g

p
L½Ψ�

�����
fuσ ;μ;gαβ ;Aαg¼fixed

;

with Ψ≡ fβμ;Λβ; gμν; Aμg. Diffeomorphism and gauge
invariance of L together imply a set of Bianchi identities,
which together with the definition of JμS suffices to show
that Eq. (3) is satisfied [11]. In the above equation, one can
interpret fhσ;ng as characterizing the adiabatic heat current
and adiabatic charge density which satisfy a relation of the
form Tsþ μ · n ¼ −uσhσ .
It is intuitively clear that by restricting class L solutions

to hydrostatics, we recover the partition function scalars
HS. As a result one can write L ¼ HS∪H̄S, with H̄S
denoting scalar invariants that vanish identically in hydro-
statics; hence, hydrostatic scalars take values in a coset
manifold L=H̄S.
There are two other adiabatic constitutive relations

which are nonhydrostatic but nondissipative. One class
of adiabatic constitutive relations describes Berry-like
transport (class B), which can be parametrized as

ðTμνÞB ≡ −
1

2
N ðμνÞðαβÞδBgαβ þ X ðμνÞα · δBAα;

ðJαÞB ≡ −
1

2
X ðμνÞαδBgμν − S½αβ� · δBAβ: ð5Þ

Here N ðμνÞðαβÞ ¼ −N ðαβÞðμνÞ, Xμνα, and Sαβ are arbitrary
local functionals of Ψ with indicated (anti)symmetry

properties, such that, along with JμS ¼ −βνTμν − ðμ=TÞJμ,
the adiabaticity equation is satisfied [6,14]. A prime
example for structures of the type (5) is the parity odd
shear tensor in three dimensions which contributes to Hall
viscosity (class B). Thus, the tensors N μναβ, Xμνα, and Sαβ

can be thought of as a generalization of the notion of odd
viscosities and conductivities.
We will denote the other class as class H̄V , which can be

parametrized as

ðTμνÞH̄V
≡ 1

2
½DρC

ρðμνÞðαβÞ
N δBgαβ þ 2CρðμνÞðαβÞ

N DρδBgαβ�

þDρC
ρðμνÞα
X · δBAα þ 2CρðμνÞα

X ·DρδBAα;

ðJαÞH̄V
≡ 1

2
½DρC

ρðμνÞα
X δBgμν þ 2CρðμνÞα

X DρδBgμν�

þDρC
ρðαβÞ
S · δBAβ þ 2CρðαβÞ

S ·DρδBAβ; ð6Þ

where CρðμνÞðαβÞ
N ¼ CρðαβÞðμνÞ

N . The entropy current has a
similar form as in class B along with an additional
contribution which is quadratic in δBgμν and δBAμ.
Finally, we have exactly conserved vectors (class C) that
can be added to the entropy current without modification of
the constitutive relations. They describe possible topologi-
cal states which transport entropy but no charge or energy.
We claim that the above classification is exhaustive.
Theorem.—The eight classes of adiabatic hydrodynamic

transport can be obtained from a scalar Lagrangian density
LT ½βμ;Λβ; gμν; Aμ; ḡμν; Āμ;AðTÞ

μ�:

LT ¼ 1

2
Tμνḡμν þ Jμ · Āμ

þ ½JσS þ βνTνσ þ ðΛβ þ βνAνÞ · Jσ�AðTÞ
σ: ð7Þ

As indicated, the Lagrangian density depends not only
on the hydrodynamic fields and the background sources,
but also on the Schwinger-Keldysh partners of the sources
fḡμν; Āμg and a new KMS gauge field AðTÞ

μ. This
Lagrangian is invariant under diffeomorphisms and gauge
transformations [15] and under Uð1ÞT, which acts only on
the sources as a diffeomorphism or gauge transformation
along B. The Uð1ÞT gauge invariance implies a Bianchi
identity, which is nothing but the adiabaticity equation (3).
Furthermore, a constrained variational principle for the
fields fβμ;Λβg ensures that the dynamics of the theory is
simply given by conservation. We anticipate that the KMS
gauge field plays a crucial role in implementing non-
equilibrium fluctuation-dissipation relations which follow
from the KMS condition; its significance both in hydro-
dynamic effective field theories as well as in holography
will be discussed in a future work [17].
Route to dissipation.—Having classified solutions to the

adiabaticity equation, let us now turn to the characterization
of hydrodynamic transport including dissipative terms
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(class D). We will do so by first systematically eliminating
all of the adiabatic transport by the following algorithm.
(1) Enumerate the total number of transport coefficients,

totk∂ , at the kth order in the derivative expansion. This can
be done by either working in a preferred fluid frame,
or more generally by classifying frame-invariant scalar,
vector, and tensor data.
(2) Find the particular solution to the anomaly-induced

transport (if any); this fixes all terms in class A.
(3) Restrict to hydrostatic equilibrium. The (indepen-

dent) nonvanishing scalar fields and transverse conserved
vectors determine HS and HV , respectively (after factoring
out terms which are related up to total derivatives), which
parametrize the (Euclidean) partition function [9,10].
(4) Classify the number of tensor structures entering

constitutive relations that survive the hydrostatic limit.
Since they are to be determined from HS and HV ,
respectively, we should have a number of hydrostatic
relations HF. In general, the hydrostatic constrained trans-
port coefficients are given as linear differential combina-
tions of unconstrained ones.
(5) Determine the class L scalars that vanish in hydro-

static equilibrium H̄S from the list of frame invariant scalars
after throwing out terms in HS (and those related by total
derivatives).
(6) Find all solutions to class B and H̄V terms at the

desired order in the gradient expansion by classifying
potential tensor structures fN ;X ;Sg and fCN ;CX ;CSg,
respectively. We have now solved for the adiabatic part of
hydrodynamics.
(7) The remainder of transport is dissipative and con-

tributes to Δ ≠ 0. Class D is subdivided into two classes:
terms constrained by the second law lie in class Dv, while
those in class Ds contribute subdominantly to entropy
production and are arbitrary. The goal at this stage is to
isolate the Dv terms. Fortunately, they only show up at the
leading order in the gradient expansion (k ¼ 1); for k ≥ 1,
all dissipative terms are in class Ds (cf. Refs. [3,4]).
(8) Finally, class Ds can be written in terms of dissipative

tensor structures using the same formalism employed for
class B, except now we pick a different symmetry structure
to ensure Δ ≠ 0.
Steps (1)–(6) can be implemented straightforwardly in

the Uð1ÞT invariantLT , but wewill exemplify this algorithm
by a more pedestrian approach below. In Table I, we provide
a classification of transport for few hydrodynamic systems
up to second order in gradient expansion.
Example: Weyl invariant neutral fluid.—To illustrate our

construction consider a (parity-even) Weyl invariant neutral
fluid which has been studied extensively in the holographic
context [18–20]. Weyl invariance implies that the stress
tensor must be traceless and built out of Weyl covariant
tensors. Our classification suggests the following constit-
utive relation written in a basis adapted to the eightfold
classification [21]:

Tμν ¼ pðduμuν þ gμνÞ − 2ησμν

þ ðλ1 − κÞσ<μασν>α þ ðλ2 þ 2τ − 2κÞσ<μαων>
α

þ τðuαDW
α σμν − 2σ<μαων>

α Þ þ λ3ω
<μαων>

α

þ κðCμανβuαuβ þ σ<μασν>α þ 2σ<μαων>
α Þ: ð8Þ

To obtain this, note that for a neutral fluid there are no
anomalies, so A ¼ 0. At first order there is only a class D
term ησμν, which contributes to Δ ¼ 2ησ2, leading to η ≥ 0

(shear viscosity is non-negative). At second order we have
two hydrostatic scalars ωμνω

νμ and WR; hence, HS ¼ 2

corresponding to λ3 and κ terms. As σμν vanishes in
hydrostatics only two tensors survive the limit; thus, there
are no constraints, HF ¼ 0. There are no transverse vectors

and so HV ¼ H̄V ¼ 0. Surprisingly, ðλ2 þ 2τ − 2κÞσhμαωνi
α

is a class B term—it can be obtained from
N ½ðμνÞjðαβÞ� ∼ ðλ2 þ 2τ − 2κÞðωμαPνβ þ permutationsÞ.
There is one nonhydrostatic scalar σ2, which is in H̄S
corresponding to the τ term above. This leaves us with one

class D term which can be inferred to be ðλ1 − κÞσhμασνiα .
Its contribution to entropy production is ∇μJ

μ
S∼

ðλ1 − κÞσανσνβσαβ. This being subdominant to the leading
order ησ2 entropy production, it follows that ðλ1 − κÞ
belongs to class Ds.
While this completes the classification, we note one

rather intriguing fact. For holographic fluids dual to two
derivative gravity, the second order constitutive relations
(cf. Ref. [20]) can be derived from a class L Lagrangian:

LW ¼ −
1

16πGdþ1

�
4πT
d

�
d−2

×

� WR
ðd − 2Þ þ

1

2
ω2 þ 1

d
Har

�
2

d
− 1

�
σ2
	
; ð9Þ

where HarðxÞ ¼ γE þ Γ0ðxÞ=ΓðxÞ is the harmonic number
function (γE is Euler’s constant). The first two terms are in
HS while σ2 ∈ H̄S, and they give contributions to each of
the five second order transport coefficients. We therefore
have two relations:

TABLE I. Transport taxonomy for some simple (parity-even)
fluid systems in d ≥ 4. The fluid type refers to whether we
describe pure energy-momentum transport (neutral) or transport
with a single global symmetry (charged). We have indicated the
derivative order at which we are working by k∂.
Fluid Type Total HS H̄S HF HV A B H̄V D

Neutral 1∂ 2 0 0 0 0 0 0 0 2
Neutral 2∂ 15 3 2 5 0 0 2 0 3
Weyl neutral 2∂ 5 2 1 0 0 0 1 0 1
Charged 1∂ 5 0 0 2 0 0 0 0 3
Charged 2∂ 51 7 5 17 0 0 11 2 9
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λ2 þ 2τ − 2κ ¼ 0; λ1 − κ ¼ 0: ð10Þ

Eliminating κ, we have τ ¼ λ1 − 1
2
λ2, which was argued to,

in fact, be a universal property of two derivative gravity
theories [23]. Curiously, the first relation is also obeyed
in kinetic theory to the orders in which computations
are available [24]. We advance this as the evidence that
our eightfold classification explains various hitherto unex-
plained coincidences in both perturbative transport calcu-
lations and nonperturbative results from the AdS/CFT
correspondence.
The second relation in Eq. (10) suggests that the

subleading entropy production from ðλ1 − κÞ is absent in
AdS black holes [25]. Inspired by earlier observations
regarding the lower bound of shear viscosity η=s ≥ 1=4π
[26], we conjecture that holographic fluids obtained in the
long-wavelength limit of strongly interacting quantum
systems obey a principle of minimal dissipation. The
fluid-gravity correspondence provides the shortest path
in the eightfold classification: AdS black holes scramble
fast to thermalize, but are slow to dissipate.
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