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A single-shot Toffoli, or controlled-controlled-NOT, gate is desirable for classical and quantum
information processing. The Toffoli gate alone is universal for reversible computing and, accompanied
by the Hadamard gate, forms a universal gate set for quantum computing. The Toffoli gate is also a key
ingredient for (nontopological) quantum error correction. Currently Toffoli gates are achieved by
decomposing into sequentially implemented single- and two-qubit gates, which require much longer
times and yields lower overall fidelities compared to a single-shot implementation. We develop a quantum-
control procedure to construct a single-shot Toffoli gate for three nearest-neighbor-coupled super-
conducting transmon systems such that the fidelity is 99.9% and is as fast as an entangling two-qubit
gate under the same realistic conditions. The gate is achieved by a nongreedy quantum control procedure
using our enhanced version of the differential evolution algorithm.

DOI: 10.1103/PhysRevLett.114.200502 PACS numbers: 03.67.Lx, 42.50.Ex, 85.25.Cp

Scalable quantum computing [1,2] requires a set of high-
fidelity universal quantum gates with which to construct the
circuit [2–4]. Experimental progress towards a high-fidelity
universal set of gates comprising single- and two-qubit
operations has been impressive, exceeding 99.9% for
single-qubit gates and 99% for an entangling two-qubit
gate [3], but an outstanding problem is that (nontopolog-
ical) quantum error correcting codes require a gate acting
on at least three qubits [5,6], with the Toffoli gate [7–9]
being optimal. The Toffoli gate is also a key component
for reversible arithmetic operations, such as the modular
exponentiation, which is a necessary step in Shor’s factor-
ing algorithm [10].
The quantum Toffoli gate is to effect a three-qubit

controlled-controlled-NOT (CCNOT) gate, which means that
the third qubit is flipped only if the first two qubits are in the
j1i state and not flipped otherwise. Thus far Toffoli gates are
achieved by decomposing into single- and two-qubit gates
with resultant fidelities limited to 81% in a postselected
photonic circuit [11], 71% in an ion-trap system [7], 68.5%
in a three-qubit circuit QED system [8], and 78% in a
four-qubit circuit QED system [6]. We here introduce a
nongreedy quantum-control approach for directly construct-
ing Toffoli gates based on an enhanced version of the
differential evolution (DE) algorithm [12,13]. We show that
our scheme applied to the three nearest-neighbor-coupled

superconducting transmon systems should produce a Toffoli
gate operating with 99.9% fidelity and operating as fast as
an entangling two-qubit gate under the same conditions.
As our quantum-control-based approach [14] to realizing the
Toffoli gate does not resort to decomposition, a fast Toffoli
gate enables error correction with high fidelity under this
scheme. An additional valuable benefit of realizing CCNOT

directly is that the Hadamard (H) and CCNOT together make
a universal gate set [15] with significant advantages over
the oft-studied H, π=8 gate, and CNOT universal set [2].
Superconducting circuits offer a promising medium for

realizing a high-fidelity CCNOT gate based on quantum
control of three nearest-neighbor-coupled superconducting
artificial atoms [3]. Our approach is to vary the energy levels
for each of three individual superconducting atoms using
time-dependent control electronics, which conveniently
do not require additional microwave control [16]. A similar
strategy has recently been employed successfully to design
two-qubit controlled-Z gates, for which optimal pulses
are found via a greedy algorithm [17]. We, however, have
observed that existing optimization algorithms (including
greedy algorithms) are insufficient to generate an optimal
pulse for high-fidelity Toffoli gates, and, therefore, devel-
oped a nongreedy optimization scheme, referred to here as
subspace-selective self-adaptive DE or SuSSADE.
We consider a linear chain of three nearest-neighbor-

coupled superconducting artificial atoms, realized as
transmons [3] with distinct locations labeled k ¼ 1; 2; 3.
The transmons have nondegenerate discrete energy levels,
labeled fjjikg, with j ¼ 0 for the ground state. The
energies are anharmonically spaced, with this spacing

*ezahedin@ucalgary.ca
†ghoshj@ucalgary.ca
‡sandersb@ucalgary.ca

PRL 114, 200502 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
22 MAY 2015

0031-9007=15=114(20)=200502(5) 200502-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.114.200502
http://dx.doi.org/10.1103/PhysRevLett.114.200502
http://dx.doi.org/10.1103/PhysRevLett.114.200502
http://dx.doi.org/10.1103/PhysRevLett.114.200502


allowed to be dependent on the specific transmon. Whereas
superconducting atoms contain many energy levels, we
truncate all energy levels for j > 3 for each transmon as a
CCNOT operates on at most three excitations.
Although the Toffoli gate acts on three qubits as per

definition, our quantum-control procedure operates on the
first four levels of each transmon. The Hamiltonian that
generates Toffoli acts on the 43-dimensional Hilbert space
H⊗3

4 with energy basis fjj ∈ f0; 1; 2; 3gi⊗3g. We follow
the standard practice of specifying transmon energy levels
instead as frequencies with these atomic frequencies shifted
by the frequency of a rotating-frame basis transformation:
the shifted frequency of the kth transmon is Δk, and the
anharmonicity of the jth level of the kth transmon is ηjk.
Therefore, the energy of the kth transmon’s jth level at time
t is h½jΔkðtÞ − ηjk�.
Nearest-neighbor transmons couple via an XY interac-

tion with coupling strength between the kth and ðkþ 1Þth
transmons denoted by gk. The three-transmon Hamiltonian
is thus [16]

ĤðtÞ
h

¼
X3

k¼1

X3

j¼0

ðjΔkðtÞ − ηjkÞjjikhjjk

þ
X2

k¼1

gk
2
ðXkXkþ1 þ YkYkþ1Þ; ð1Þ

for coupling operators

Xk ¼
X3

j¼1

ffiffi
j

p
jj − 1ikhjjk þ H:c:;

Yk ¼ −
X3

j¼1

ffiffiffiffiffiffi
−j

p
jj − 1ikhjjk þ H:c:; ð2Þ

which are higher-dimensional generalizations of Pauli spin
matrices [16,18], and H.c. denotes the Hermitian conjugate.
Here we employ Hamiltonian evolution to realize the

CCZ gate, which effects αj0i þ βj1i ↦ αj0i − βj1i on the
third qubit only if the first two qubits are j1i. The CCNOT

and CCZ operations are equivalent under the local trans-
formation CCNOT ¼ ½1 ⊗ 1 ⊗ H�CCZ½1 ⊗ 1 ⊗ H� (sim-
ilar to the equivalence between two-qubit CNOT and CZ

gates), with H straightforward to implement as a fast
single-qubit operation [19,20]. The CCZ gate is achieved
by varying Δk of each superconducting atom over duration
Θ with the resultant Hamiltonian-generated time-ordered
(T ) evolution operator

UðΘÞ ¼ T exp

�
−i

Z
Θ

0

ĤðτÞdτ
�
: ð3Þ

Whereas our approach enables generating any desirable
pulse shape for Δk, here we consider two types of pulses:
piecewise-constant and piecewise-error function. These
time-dependent control pulses are constrained within the

frequency range of a superconducting transmon system.We
employ the less computationally expensive piecewise-
constant function to demonstrate the existence of an
optimal pulse for a high-fidelity Toffoli gate. However,
the control electronics for superconducting systems is only
capable of generating smooth pulses, which motivated us to
consider a realistic case for which the control parameters
are connected together via smooth error functions [16,21].
We show that the gate fidelity does not depend on the
pulse shape, and only depends on the number of control
parameters. Therefore, without any loss of generality,
we choose the less computationally expensive piecewise-
constant control function to analyze the fidelity of the
designed gate against other parameters.
The Hamiltonian evolution (3) describes the unitary

dynamics of the system in the absence of decoherence.
Decoherence is incorporated by treating each atom as a
damped harmonic oscillator characterized by amplitude
and scattering induced phase-damping rates for each
oscillator. The corresponding time scales are relaxation
time T1 and dephasing time T2, analogous to the rates
employed for two-level systems [2,22]. We here assume
T ≔ T1 ≡ T2, which is valid for frequency-tunable trans-
mons [16]. These decohering processes modify the unitary
evolution (3) to a completely positive trace-preserving map
EðΘÞ, which is decomposable into an operator sum as
discussed in the Supplemental Material [23].
A high-fidelity quantum gate is usually designed by

determining an optimal control pulse for each frequencyΔk
neglecting open-system effects such as decoherence.
Performance is assessed for the unitary evolution (3)
projected to the computational subspace: UPðΘÞ ≔
PUðΘÞP. The standard figure of merit for performance
of UPðΘÞ is the “intrinsic fidelity” (fidelity neglecting
decoherence) with respect to the ideal gate, in this case CCZ,
so the intrinsic fidelity is [13] F ¼ 1

8
jTrðCCZ†UPðΘÞÞj

with F ¼ 1 if UPðΘÞ ¼ CCZ and 0 ≤ F < 1 otherwise.
After determining control pulses that maximize F ,
decoherence is then incorporated into the calculation to
assess the performance under open-system conditions [16].
In the presence of decoherence, the efficacy of the

nonunitary evolution compared to the target gate is quantified
by the average state fidelity F̄, which is calculated as follows.
For fjψki ∈ H⊗3

2 g the set of three-transmon computational
basis states, the nonunitary extension of the unitary evolution
(3) transforms a pure computational basis state jψkihψkj into
a mixed state ρfinalk . As each basis state jψkihψkj remains

invariant under an ideal CCZ gate, average state fidelity F̄ ¼
1
8

P
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhψkjρfinalk jψkij

q
quantifies the efficacy of a quantum

gate in the presence of intrinsic as well as decoherence-
induced noise for a given optimal pulse.Whereas F̄ ≈ 99.9%
is considered to be a threshold for topological (surface-code)
fault tolerance for single- and two-qubit gates [3], our
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approach achieves this fidelity even for the three-qubit CCZ
gate subject to realistic constraints of the control pulses.
In this work, unless otherwise stated, the average state
fidelity is referred to as fidelity.
The strategy for controlling the evolution (3) is to vary

the frequencies so that energy levels approach each other
but then avoid degeneracies, known as avoided level
crossings. These avoided crossings mix energy-level pop-
ulations and dynamical phases together. This avoided-
crossing effect enables shaping the evolution toward the
final time-evolution operator objective, which is obtained
by maximizing F .
Optimal pulse shapes for each Δk are obtained by

discretizing the time duration Θ into N constant intervals
of duration Δτ ≔ Θ=N, and the control-problem parameter
space is spanned by the set of variables fΔkðlΔτÞ;
l ¼ 1;…; Ng for each k. These control points are then
connected via step functions or error functions to construct
the pulse shapes as we described earlier. The CCZ opti-
mization problem is nonconvex with a 3N-dimensional
parameter space corresponding to N parameters for each
of the three frequencies Δ1;2;3. For a fixed Δτ, therefore,
the dimension of the parameter space increases linearly
with the total time duration Θ, which influences which
optimization methods work and which do not.
We devise a quantum-control procedure that designs an

optimal pulse for a Toffoli gate, which operates as fast as a
two-qubit gate [16] with a target intrinsic fidelity of 0.9999.
We first use the existing optimization algorithms, namely,
the quasi-Newton approach, which employs the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) approximation of the
Hessian [35–39], simplex methods [40], several versions
of particle swarm optimization [41,42], and differential
evolution (DE) algorithms [13,43]; however, they all failed
to reach the target intrinsic fidelity under the time constraint
of the fast Toffoli gate. Therefore, we construct a new
optimization algorithm here to realize a Toffoli gate that
reaches our target.
Of these optimization approaches, DE yielded the best

fidelity but failed to reach the target due to the well-known
problems of searching high-dimensional parameter spaces
[44]. This drawback motivated us to enhance DE for such
high-dimensional problems by instead breeding over ran-
domly selected low-dimensional subspaces, hence our name
subspace-selective self-adaptive DE (SuSSADE) algorithm
(see Supplemental Material [23]). One of our objectives is to
demonstrate (numerically) the capability of SuSSADE with
respect to finding a solution equally successfully regardless
of parameter-space dimension within the regime that is
relevant for current superconducting experiments.
To understand our enhancement, we first briefly review

standard DE [43]. DE cooperatively evolves a collection of
trial solutions, called chromosomes, towards an optimal
solution. Chromosomes are labeled by their location in the
parameter space, and optimization is thus a search for the

best chromosome in this space. Evolution from one
generation (i.e., chromosomes for one iteration step) to
the next is achieved by breeding each chromosome with
three other randomly chosen chromosomes from the same
generation. Breeding yields a single daughter chromosome,
and only the fittest of the original and daughter chromo-
some survives. This breeding-and-survival procedure con-
tinues until either a chromosome reaches the requisite F or
the number of generations reaches a specified upper bound.
Whereas standard DE breeds chromosomes randomly

selected from the entire space, our SuSSADE algorithm
is much faster due to breeding being restricted some of
the time to a subset of chromosomes drawn from a low-
dimensional subspace, i.e., some fixed parameters and
some variable parameters. Our algorithm randomly
switches breeding between the subspace and the whole
space according to the value of an input switch parameter
S ∈ ½0; 1� such that a uniformly distributed random number
rj ∈ ½0; 1� at generation j restricts breeding to the subspace
if rj < S and breeds in the whole space otherwise.
In the extreme case of restricting to one-dimensional

subspaces, chromosomes can breed only if all but one of the
parameters are the same. We refer to this one-dimensional
extreme case as 1DSuSSADE. Henceforth, we use only
1DSuSSADE as it works well with S ¼ 0.14 for designing
the Toffoli gate.
Here we present two types of pulses that achieve the

target intrinsic fidelity, and we explore how the perfor-
mance of piecewise constant pulses vary with respect to the
total gate time, coupling strength, and decoherence-induced
noise. The success of our quantum control procedure
corresponds to a target intrinsic fidelity of 0.9999 and a
time scale comparable to a two-qubit gate [16].
Figure 1 shows both the piecewise constant as well as

piecewise-error-function pulses that achieve the target intrin-
sic fidelity obtained by optimizing all the parameters within
the experimental constraints. The CCZ gate corresponding to
Fig. 1 requires a total gate time of 26 ns given a coupling
strength of g ¼ 30 MHz [16,17]. Comparing the intrinsic
fidelities of Figs. 1(a) and 1(b) shows that the target fidelity
does not depend on the shape of the pulse; rather it depends
on the number of control parameters. In what follows,
therefore, we consider only the piecewise-constant pulse
shapes as these are computationally less expensive to handle
and also do not compromise the generality of our results. We
show in Fig. 2 how the (maximized) intrinsic fidelity changes
when the parameters g and Θ are varied within a range
commensurate with currently available superconducting
circuits [3]. Figure 2(a) gives the intrinsic fidelity as a
function of total gate time for various coupling strengths
g. Figure 2(b) shows that the total gate time changes linearly
with the coupling g, in order to achieve a given fidelity.
Finally, we consider the effect of decoherence on the
approximate CCZ gate obtained by optimal pulses shown
in Fig. 1(a), and compute the fidelity F̄. Amplitude-damping
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and phase-damping rates (T−1
1 and T−1

2 ) are treated as the
dominant forms of decoherence. For fast gates with Θ ≪ T,
but with decoherence more significant than intrinsic errors,
an order-of-magnitude estimate yields 1 − F̄ ∼ Θ=T [16],
which is consistent with the numerically evaluated plot of F̄
vs T in Fig. 3. We have employed our quantum control
procedure to determine the optimal pulse (Fig. 1) for a high-
fidelity single-shot three-qubit Toffoli gate. We computed a
smooth pulse [Fig. 1(b)], forwhich the control parameters are
separated by 1 ns and connected via error functions, thereby
ensuring that the pulse is compatible with the power and
bandwidth specifications of standard control electronics.
Applying our approach to the three nearest-neighbor-
coupled superconducting transmon systems produces a
fast and high-fidelity Toffoli gate in 26 ns, which matches
the time scale for the two-qubit avoided-crossing-based
CZ gate.
The longer total gate time, with a fixed Δτ, generates a

higher-dimensional parameter space for the optimization

algorithm. The monotonically increasing optimized intrin-
sic fidelity in Fig. 2(a) with increasing total time thus
demonstrates the capability of our algorithm for a param-
eter regime relevant to superconducting experiments, for
which alternative algorithms fail. The linear relationship
between 1=Θ and g demonstrates that faster gate speed
requires higher coupling. This relation is a characteristic
signature for avoided-crossing-based gates (as also
obtained for avoided-crossing-based two-qubit gates
[16]) assuming the corresponding optimization algorithm
is capable of finding the optimal solution regardless of the
parameter space dimension.
The effect of decoherence on the performance of the

optimal Toffoli gate has been explored (Fig. 3), and we
interpret the corresponding result as follows: when T ≫ Θ,
the effect of thermal noise becomes less dominant, and the
fidelity of a quantum gate is almost entirely contributed by
the intrinsic fidelity. Here we have been able to design a fast
and optimal pulse for a Toffoli gate using our quantum
control approach for which the intrinsic fidelity is so high
(∼99.99%), that the fidelity (F̄ ∼ 99.9%) is significantly
contributed by the decoherence-induced noise, which is also
very small (compared to previous realizations) for the state-
of-the-art superconducting atoms with T ∼ 20–60 μs [3].
In summary, we have devised a powerful quantum control

scheme, named SuSSADE, to design a fast and high-fidelity
single-shot Toffoli gate for a scalable chain of the nearest-
neighbor-coupled three-transmon system. The time required
for the Toffoli operation is comparable with the time scale of
the two-qubit avoided-crossing-based CZ gate, which is the
key advantage our quantum-control approach offers com-
pared to decomposition-based approaches requiring many
such two-qubit gates to implement a single CCZ operation.
Our three-transmon system serves as amodule for all 1D and
2D quantum computing architectures [45], and, therefore,
one can realize our scheme in a large-scale multiqubit
architecture, if the undesired couplings are turned off [46].
Our approach demonstrates the efficacy of SuSSADE for

(a)

(b)

FIG. 1 (color online). Optimal pulse shapes for the Toffoli gate
given as frequency detunings Δi (for the i ¼ 1; 2; 3) of the super-
conducting atoms, corresponding to the (a) piecewise-constant
and (b) error-function-based pulse profiles, as a function of
time τ with constant step-size time interval Δτ ¼ 1 ns and with
F ¼ 0.9999 and g ¼ 30 MHz. The black dots on both plots show
the control parameters used to optimize the shape of the pulses.

(a) (b)

FIG. 2 (color online). (a) Intrinsic fidelityF vs total gate timeΘ
for various coupling strengths g and (b) 1=Θ vs g for F ¼ 0.999.
The ◇, △, ∘, and □ denote the actual numerical computations
using 1DSuSSADE, and solid lines depict cubic-fit curves.

FIG. 3 (color online). The fidelity F̄ is plotted against the
coherence times T. We assume T ¼ T1 ¼ T2, with T1 and T2 the
relaxation time and dephasing time of each transmon, respec-
tively. This assumption is valid for tunable transmons. Each ◇

denotes an actual numerical result obtained from the decoherence
calculation. The solid line depicts the cubic-fit curve.
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designing quantum gates as well as yielding the concrete
example of a three-qubit gate required for scalable quantum-
error correction.
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