
Machine Learning for Discriminating Quantum Measurement Trajectories
and Improving Readout

Easwar Magesan, Jay M. Gambetta, A. D. Córcoles, and Jerry M. Chow
IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, USA

(Received 18 November 2014; published 18 May 2015)

Current methods for classifying measurement trajectories in superconducting qubit systems produce
fidelities systematically lower than those predicted by experimental parameters. Here, we place current
classification methods within the framework of machine learning (ML) algorithms and improve on them by
investigating more sophisticated ML approaches. We find that nonlinear algorithms and clustering methods
produce significantly higher assignment fidelities that help close the gap to the fidelity possible under ideal
noise conditions. Clustering methods group trajectories into natural subsets within the data, which allows
for the diagnosis of systematic errors. We find large clusters in the data associated with T1 processes and
show these are the main source of discrepancy between our experimental and ideal fidelities. These error
diagnosis techniques help provide a path forward to improve qubit measurements.
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Maximizing the information one can extract from a
physical system requires the ability to perform accurate
measurements. Our goal in this Letter is to provide methods
for diagnosing measurement errors and increasing fidelities
by using various machine learning (ML) algorithms. An
important application of these techniques is in quantum
information processing, where highly accurate operations
and measurements are required to perform fault-tolerant
information processing in the presence of noise [1]. We
apply our methods in a superconducting qubit measurement
system, and we anticipate that the generality of these
techniques can be useful in a broader class of systems.
Superconducting quantum bits (qubits) are becoming
increasingly promising for experimentally demonstrating
quantum protocols due to their long coherence times [2–4],
high-fidelity multiqubit gate operations [5], and the ability
to perform single-shot measurements [6–9] in a circuit
quantum electrodynamics (CQED) architecture [10]. In the
dispersive measurement scheme of CQED, a superconduct-
ing anharmonic oscillator, such as a transmon [11], is
coupled to a resonator, producing a state-dependent shift of
the resonator frequency. This allows for qubit measure-
ments by driving the resonator and recording the output
trajectory [12] in phase (I-Q) space. In practice, significant
sources of random noise and systematic effects, such as T1

processes (spontaneous decay), make single-shot trajecto-
ries appear complex and difficult to distinguish. There
has been significant progress in reducing error rates and
measurement times [13]; however, managing, classifying,
and extracting useful information from the trajectory data
is extremely important for improving readout as these
systems scale to larger networks.
The outline of the Letter is as follows. We begin by

describing the experimental system used to create the
measurement data as well as how we characterize the
measurement performance by the assignment fidelity F a

[defined in Eq. (1)]. First, we analyze the data using the
current method, which is a simplified version of linear
discriminant analysis (LDA), and obtain F a ¼ 0.9586.
LDA is the simplest ML classification algorithm and finds
the plane that optimally separates the I-Q data trajectories
under idealized assumptions of symmetric and Gaussian
noise at each point in time. Next, we use the quadratic
extension of LDA called quadratic discriminant analysis
(QDA), which allows for noise asymmetry, and find
noticeable improvement in the assignment fidelity.
Finally, we remove assumptions on the noise and approach
the problem from a purely geometric viewpoint using
support vector machines (SVMs). The nonlinear SVM
provides the largest improvement giving F a ¼ 0.9821
(∼2.4% increase), which indicates nonlinear effects such
as T1 events are likely present. To verify this, and to
understand details of the noise, we use ML clustering
algorithms to find natural subclasses in the data. We find a
large subclass corresponding to T1 events which validates
our hypothesis. Accounting for these events, we find
assignment fidelities much closer to those that should be
attainable in our system under the ideal noise conditions
assumed for the optimality of LDA.
Let us briefly make a few points about using ML

methods. First, the methods we present here can be useful
in a much broader context. Any measurement scheme
that produces patterns in a geometric space can potentially
benefit from more advanced ML methods. Investigating the
applicability to different systems will depend on the details
of each situation. Second, these methods are applicable
even if we are trying to improve higher fidelity measure-
ments than those considered here. The key is that these
methods can be tailored according to the types of noise
present. Third, ML methods have also been applied to other
problems in quantum information such as phase estimation
[14] and asymptotic state estimation [15].
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Our system is a single transmon qubit (Q4) coupled to
a readout resonator in a lattice of four superconducting
qubits [16] (full details of this experiment are in Ref. [16]
and a diagram of the four-qubit setup is given in the
Supplemental Material [17]). The main parameters of the
single-qubit system are provided in Table I. The measure-
ment framework is the dispersive limit of CQED where
−ðg=ΔÞ ≪ 1 (Δ ¼ ω − ωR). A full discussion of this
framework is given in [10,17]. The general idea is that
there is a qubit state-dependent dispersive shift of the
readout resonator frequency, so driving near the bare
resonator frequency corresponds to a quantum nondemo-
lition measurement of the qubit state. A circuit diagram of
the single-qubit apparatus is shown in Fig. 1. The control
pulse is shown in black (top) and the readout pulse in red
(bottom). The readout pulse is split into two signals, one of
which is sent to the device while the other is mixed with
the post-amplification signal. A single drive line enters the
device and amplification of the output signal is provided
by the (low-noise) Josephson parametric amplifier and
HEMT amplifier. The I-Q field quadratures are measured
and recorded, producing single-shot time-dependent data.
An example of this data for a j0i state preparation is given
in Fig. 2. I-Q plots for single-shot j0i and j1i preparations,
as well as the means over these preparations, are given in
Fig. 3. We see that, once the measurement drive is turned
on, photons populate the cavity leading to a Stark shift of
the qubits and an increase in the mean separation between
the trajectories. Each single-shot trajectory can be compli-
cated due to noise; however, there are enough shots to
ensure smooth and well-separated means.
The assignment fidelity

F a ¼ 1 − ðP½0j1� þ P½1j0�Þ=2; ð1Þ
is a standard metric for characterizing how well a meas-
urement assigns outcomes. Here, P½0j1� (P½1j0�) is the
probability of obtaining outcome “0” (“1”) given the
system was prepared in j1i (j0i) and so F a ∈ ½0; 1�. Our
data consist of 51 200 single-shot trajectories (shots), half
initially prepared in j0i and the other half in j1i (denote
these classes by C0 and C1). The first half of the trajectories
is used as a training set for classification on the second half.
The total measurement time T is 2.6 μs and ½0; T� is
discretized into 163 time-points, so trajectories are repre-
sented by vectors x ∈ R326 (let M ¼ 326) where the first
(last) 163 entries correspond to the real (imaginary) parts of

the trajectory. Hence, each xðjÞ can be viewed as a real-
valued random variable. The mean trajectories and covari-
ance matrices for each class are denoted μ0, μ1 (see Fig. 3)
and Σ0, Σ1, respectively.
The current method of classifying trajectories [22] is

based on LDA [24] and assumes the noise is highly
idealized; the noise at each time is assumed to be
(1) Gaussian distributed, (2) uncorrelated with noise at other
times, and (3) symmetric between C0, C1. Alternatively, this
can be phrased as Σ0 and Σ1 are Gaussian, diagonal, and
equal. Under these assumptions, x is associated to

fLDAðxÞ ¼ xT ½Σ−1
0 ðμ0 − μ1Þ�; ð2Þ

which is then assigned as 0 or 1 according to an appropriate
threshold. Using this method in our experiment gives
F a ¼ 0.9586.
In reality, the noise is far from these ideal conditions and

one of the main goals of this Letter is to deal with these

FIG. 1 (color online). Circuit diagram of the single-qubit setup.
See text for details.
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FIG. 2 (color online). Measured output of I and Q quadratures
for state j0i single-shot trajectory.

TABLE I. System parameters.

Transmon 0–1 frequency ω=2π ¼ 5.415 GHz
Resonator frequency ωR=2π ¼ 6.693 GHz
Transmon-resonator coupling g=2π ¼ 42.3 MHz
Resonator linewidth κ=2π ¼ 1.21 MHz
Techo
2 22 μs

T1 29 μs
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more realistic scenarios. Before doing this, we can ask what
fidelity we would expect from the parameters of our system
if the noise did satisfy these ideal conditions. As shown
in [17], this ideal fidelity, denoted F id, is

F id ¼ 0.9999� 0.0001: ð3Þ
Hence, there is a large discrepancy between F id and F a
that can be due to effects such as state-preparation errors
and non-Gaussian or nonlinear noise. This discrepancy
motivates us to investigate better methods of classifying
trajectories.
Let us relax the unrealistic assumption of noise sym-

metry between C0 and C1. In this case, the optimal method
is QDA [23], and each trajectory x is mapped to

fQDAðxÞ ¼ −
1

2
xT ½Σ−1

0 − Σ−1
1 �xþ xT ½Σ−1

0 μ0 − Σ−1
1 μ1�; ð4Þ

and then assigned “0” or “1” according to an appropriate
threshold. We computed F a using the “fitcdiscr” function
in MATLAB for four different methods: LDAD, LDA,
QDAD, and QDA (“d” represents diagonal covariance
matrix and LDAD is the method of [22]). The results
are in the second column of Table II. Not surprisingly,
we find QDAD improves upon LDAD, and allowing
nondiagonal covariance matrices produces higher F a.
The values in Table II are the sample means from 100
repetitions. The sample variances σ2 are ∼1 × 10−8 indicat-
ing stable or reproducible results.
Avalue ofF a for QDAwas not attainable due to singular

covariance matrices, which is a result of overfitting the
data (having more variables than required from the corre-
lation time in the trajectories). To remedy this, we per-
form dimensionality reduction using principal component

analysis (PCA) [25] and find 99.9% of the variance in the
data can be accounted for in a subspace of dimension ∼20
(noise correlation time ∼85–180 ns). Results with a PCA
preprocessing step (using “princomp” in MATLAB) are in
the third column of Table II. Not surprisingly QDA
provides the highest F a out of all cases considered.
These classification methods assume Gaussian noise

and better methods are needed to deal with realistic noise.
We approach this in two ways. The first is via the SVM
[26,27], which requires no assumptions on the noise
and can be extended to nonlinear discriminating surfaces.
The second is to utilize “clustering” methods in ML to
naturally group the data from which we perform multiclass
classification.
The linear SVM is a quadratic program based on

maximizing the minimum distance of a data point to a
hyperplane separating the data. The nonlinear SVM is
derived by defining a kernel that maps the data to a higher-
dimensional space. The linear SVM in the higher-
dimensional space allows for nonlinear discrimination in
RM. Because of its generality and simplicity, we chose a
radial basis function kernel.
We implemented the SVM using the MATLAB “fitcsvm”

function and classification was repeated 100 times. The
mean values with the optimal soft-margin parameter are
contained in Table III (see [17] for details). Sample
variances σ2 of F a are approximately 1.9 × 10−8. The
nonlinear SVM produces the highest assignment fidelity
out of all methods considered, indicating nonlinear effects
are present. We hypothesize the main factor producing the
nonlinearity is T1 events.
Our second method for implementing a nonlinear clas-

sifier combines classification and clustering algorithms.
Clustering naturally groups the data into subsets and
is “unsupervised” since it requires no training data.
We implement k-means clustering [17,28] and anticipate
similar results can be obtained with other standard methods
such as heirarchical clustering. We used the MATLAB

“kmeans” function to find k ¼ 3 clusters in each of C0
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FIG. 3 (color online). Mean trajectories and single shots for
j0i (blue) and j1i (red) preparations. The j0i (j1i) single-shot
trajectory [blue (red) dotted line] has arrows pointing up (down)
and to the left (right). The mean trajectories of j0i (blue solid line)
and j1i (red solid line) have steady states of ∼ (−0.07, −0.02) and
(−0.01, −0.07).

TABLE II. Assignment fidelities for discriminant analysis
methods.

Method All time points PCA

LDAD 0.9586 0.9557
LDA 0.9701 0.9586
QDAD 0.9627 0.9648
QDA … 0.9712

TABLE III. Assignment fidelities for SVM methods.

Method All time-points PCA

Linear SVM 0.9753 0.9571
Nonlinear SVM 0.9821 0.9739
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and C1. We chose k ¼ 3 to take into account both variance
and systematic effects. The mean trajectories and size of the
six subclasses are given in Fig. 4. C0 is split relatively
evenly into the subclasses S0;1, S0;2, S0;3 (blue colored
trajectories) that mainly capture variance. We do not see a
C0 subclass corresponding to ground state heating; how-
ever, we implemented k means for k ¼ 7 and found a
heating subclass of size ∼230 (see Fig. 2 in [17]).
C1 has strikingly different properties as subclass S1;2

(green solid line) is comprised of T1 processes. S1;1 and S1;3
(red trajectories) are similar in size and mainly capture
variance. The key point is that we have found explicit shot
indices for T1 events. We verified that S1;2 is comprised of

T1 trajectories by performing kmeans with k ¼ 4 (see Fig. 3
in [17]). From Fig. 4, ∼9% of the j1i preparations result
in a T1 event, which is consistent with the percentage
calculated from system parameters [17], 1−e−2.6=29 ∼8.6%.
The I and Q quadratures of the T1 subclass are contained
in Fig. 5 where the T1 jump is seen most clearly in Q.
To perform classification, we lift the T1 subclass S1;2 to

a class C2 of its own, redefine C1 ¼ S1;1∪S1;3, keep C0

as before, and perform multiclass classification on C0, C1,
and C2. We implemented four multiclass algorithms in
MATLAB: multiclass LDA, multiclass SVM, “TotalBoost,”
and “RUSBoost.” The latter two are examples of boosting
algorithms [29] and RUSBoost [30] is particularly useful
since it is tailored to the case of one class (here C2) being
significantly smaller than the rest. The results are in Table IV.
We again see an increase in F a over the discriminant
analysis methods of Table II. Not surprisingly, RUSBoost
provides the most significant increase. We repeated the
k-means algorithm 50 times with random initializations and
found it to be stable (σ2 of F a ∼ 3 × 10−6).
Out of all methods considered, nonlinear SVMs

produce the greatest increase in F a (0.9586 to 0.9821).
All methods are relatively stable with reproducible assign-
ment fidelities (each method was repeated ∼100 times;
sample means of F a are the table values and sample
variances are ∼1 × 10−8).
While we have improved F a to 0.9821, we are still far

fromF id ¼ 0.9999. We hypothesize much of the remaining
discrepancy comes from T1 events. To investigate this, we
propose the simple diagnostic test of replacing each T1

event from the k-means algorithm with a random trajectory
from S1;2 ∪ S1;3. This provides a measure of F a when T1 is
negligible. The means of 100 samples for each classifica-
tion method are in Table V (variances are ∼1 × 10−8).
Nonlinear SVM produces the highest value of F a, how-
ever, for all methods F a > 0.99, which is more consistent
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FIG. 4 (color online). Subclasses found from k-means algo-
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ing each subclass is the mean over all subclass trajectories.
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moves down and right but abruptly changes its path up and left.
Legend numbers are subclass sizes.
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FIG. 5 (color online). I andQ quadratures for T1 subclass mean
trajectory.

TABLE IV. Assignment fidelities from multi-class classification.

Method All time-points PCA

Multi-LDA 0.9768 0.9689
Multi-SVM 0.9784 0.9717
TotalBoost 0.9527 0.9413
RUSBoost 0.9788 0.9723

TABLE V. Assignment fidelities with replacement of T1 events.

Method All time points PCA

LDAD 0.9920 0.9909
LDA 0.9921 0.9928
QDAD 0.9918 0.9908
QDA … 0.9927
Linear SVM 0.9936 0.9943
Nonlinear SVM 0.9945 0.9949
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with F id ¼ 0.9999. This confirms T1 events are the
significant reason for not reaching F id.
One attempt to reduce the significance of T1 is to reduce

T; however, this implies the trajectories will spend less time
near their steady states, and noise variance will dominate.
To observe this, we truncated the trajectories to different T
and calculated F a using the nonlinear SVM. From Fig. 6,
T ¼ 2.6 μs appears close to optimal. A much shorter
measurement time of ∼1.2 μs (not shown in Fig. 6) is
needed to achieve an assignment fidelity of 0.9586, which,
we recall, is the value obtained using the simplest ML
method of [22]. This is a strong message that better
classifiers can allow for shorter measurement times.
Longer measurement times than the current 2.6 μs
decrease F a due to an increase in T1 events.
To conclude, we have utilized ML to understand and

improve the readout in a superconducting system. More
sophisticated classification algorithms can potentially allow
for shorter measurement times and increase assignment
fidelities. Nonlinear SVMs provided the largest increase in
assignment fidelity, 0.9586 to 0.9821 (∼2.4%). Clustering
helped diagnose the prevalence of systematic effects by
finding clusters in the data corresponding to single-shot
identification of heating and T1 effects. We verified that T1

events are a significant source of error as the assignment
fidelity increases to 0.9945 when the T1 cluster is replaced
with typical trajectories. This is more consistent with the
ideal fidelity, and the remaining discrepancy can be due to
effects such as heating and state-preparation errors. Moving
forward, we expect these methods will help provide insight
for improving readout, especially when nonlinear and non-
Gaussian effects are present.
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FIG. 6 (color online). Varying measurement time.
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