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The traditional view of nuclear-spin decoherence in a field gradient due to molecular self-diffusion is
challenged on the basis of temperature dependence of the linewidth, which demonstrates different
behaviors between liquids and gases. The conventional theory predicts that in a fluid, linewidth should
increase with temperature; however, in gases we observed the opposite behavior. This surprising behavior
can be explained using a more detailed theoretical description of the dephasing function that accounts for
position autocorrelation effects.

DOI: 10.1103/PhysRevLett.114.197601 PACS numbers: 76.60.-k, 05.20.Jj, 51.10.+y, 82.56.Lz

For over six decades, diffusion-weighted nuclear mag-
netic resonance (NMR) has been the flagship experiment
for measurements of molecular self-diffusion in free or
confined geometries. Diffusion-based NMR experiments
have a wide range of applications from porous media [1],
catalysis [2], materials science, and chemistry [3] to
biomedicine [4]. Consider the simple experiment shown
in Fig. 1, where the nuclear induction signal is read-out in
the presence of a magnetic-field gradient. The gradient
modulates the magnetization spatially along the gradient’s
direction (assuming a sufficiently strong external field so
that the gradient is unidirectional). Time evolution of this
magnetization in the presence of diffusion effects provides
a direct and unambiguous measurement of the self-
diffusion process. In the traditional description of molecu-
lar self-diffusion [5–9], a molecule undergoes a random
walk whereby at each time step, the nuclear spins accu-
mulate phase increments that are randomly drawn from a
normal distribution. In the presence of a magnetic-field
gradient, the decoherence of the nuclear induction signal
SðtÞ follows the well-known textbook expression [5–10]

SðtÞ ¼ exp ½−ð1=3Þγ2ng2Dt3�; ð1Þ

where γn is the nuclear gyromagnetic ratio, D is the self-
diffusion coefficient, g is the applied gradient strength,
and t is time. The t3 dependence has been extensively
validated and has been utilized to measure molecular self-
diffusion coefficients in a wide variety of liquids [10–12].
In a gas, however, the situation is more complicated. The
assumption of a normally distributed phase accumulation at
every time step is difficult to justify in light of the fact that
gas molecules undergo much more rapid motion than in
liquids, due to much longer free displacements between
collisions. The farther the molecular displacements along
the direction of the gradient, the faster the nuclear spins will
lose memory of their immediate environment. This memory
loss should be expected to enter the description of the

decoherence process. Surprisingly, this simple aspect of
free diffusion is still lacking a thorough experimental
verification.
The NMR signal, SðtÞ, from an ensemble of spins

initially located at xð0Þ is given by the expectation value
of the phase factor:

SðtÞ ¼
�
exp

�
i
Z

t

0

ωðt0Þdt0
��

; ð2Þ

where ωðtÞ describes the time-dependent resonance fre-
quency offset (in the rotating frame). In the presence of a
magnetic field gradient g, the resonance frequency is
ωðtÞ ¼ γngxðtÞ, where xðtÞ, the position of the nuclear
spin after time t, is a random process. If we assume a
Gaussian random process that is stationary in the wide
sense, this expectation value takes the form [9]

exp

�
iγng

Z
t

0

hxðt0Þidt0 − γ2ng2
Z

t

0

hxðt0Þxð0Þiðt − t0Þdt0
�
:

ð3Þ
The first term, exp½iγng

R
t
0hxðt0Þidt0�, encodes the posi-

tion in the phase of the spins [13] after undergoing

FIG. 1. Measurement of molecular self-diffusion in a constant
field gradient. A 90° radio-frequency (rf) pulse tips the magneti-
zation. This resulting nuclear induction signal is measured in a
constant gradient of amplitude g. The time evolution of mag-
netization, as described by the textbook [10–12] expression (1),
interrogates the molecular self-diffusion process.
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displacement, but does not lead to decoherence unless the
diffusion is not free. The second term describes signal
decay, and consequently, affects linewidth. More compli-
cated random processes may lead to higher-order terms, but
we shall limit our discussion to the case where xðtÞ is a
wide-sense stationary Gaussian random process.
Over the time scale t of the NMR measurement, liquid

phase molecules experience displacements that are much
smaller than those in the gas phase. We may write this as
xðtÞ ≈ xð0Þ, for a liquid. This approximation, known as the
Einstein-Fick limit, indicates that the position autocorre-
lation function can be approximated by the mean-square
displacement

hxðtÞxð0Þi ≈ hxðtÞxðtÞi ¼ 2Dt; ð4Þ

where D is the self-diffusion coefficient. It is known from
experiments that in liquids, this limit holds [10–12].
However, Dliquid and Dgas differ by 3 orders of magnitude,
and it is unclear if this approximation also holds for gases.
Away from the Einstein-Fick limit, contributions from
ballistic transport become significant. We note that sub-
stitution of the limit (4) into the second term of Eq. (3)
recovers the result (1) as a special case.
In this Letter, we show that Eq. (1) does not hold for

gases based on the analysis of linewidth as a function of
temperature (T). Because DðTÞ increases with T, Eq. (1)
predicts that linewidth should increase with T. We find that
gases instead undergo line narrowing with temperature. It is
unclear by cursory inspection of Eq. (1) how gases may
differ from liquids, especially in light of the fact that the
dependence of line broadening on the diffusion coefficient
has been verified experimentally in several studies (see, for
example, Refs. [11,14,15]). The key to establishing this
distinction is a closer look at the temperature dependence of
the line broadening mechanism, as explained below.
In the NMR experiment, nuclear spins are well isolated

from the lattice and do not depolarize or randomize their
phases when undergoing molecular collisions, in contrast to
collisional broadening mechanisms in optics. Thus, the
description of line broadening in such a “weak collision”
regime reflects the histories of molecular displacements.
The simplest way to account for this is through a position
autocorrelation function. Suppose that the particle displace-
ments are modeled using a generalized Langevin equation
(GLE) with memory kernel:

M _vþ
Z

t

0

Γðt − t0Þvðt0Þdt0 ¼ ηfðtÞ; ð5Þ

where M is the mass of the diffusing particle, ΓðtÞ is a
memory kernel, vðtÞ ¼ _xðtÞ is the particle velocity, _v is its
acceleration, and ηfðtÞ is a stochastic force. The GLE has
been validated experimentally for Brownian particles
(M ≫ m, where m is the mass of fluid particles); for

example, in the studies of Refs. [16–19] M was 1010 times
larger thanm. So while the GLE was not designed to model
self-diffusion processes, it can be invoked to model viscous
drag effects via the memory kernel. In what follows, we
shall set M ¼ 1010m, which is the only regime we are
aware of where the GLE has been validated experimentally
based on direct measurements of individual histories
(namely, in Refs. [16–19]).
By the fluctuation-dissipation theorem, the stochastic

force ηfðtÞ describes colored noise, hηfð0ÞηfðtÞi ¼ kTΓðtÞ,
where k is Boltzmann’s constant. The time-correlation
function hxðtÞxð0Þi is obtained from hvðtÞvð0Þi by inte-
grating twice the velocity autocorrelation function

hvðtÞvð0Þi ¼ −
d2

dt2
hxðtÞxð0Þi: ð6Þ

Projecting Eq. (5) with the operator hvð0Þ; ⋅i yields the
deterministic equation

Mhvð0Þ_vðtÞi þ
Z

t

0

Γðt − t0Þhvð0Þvðt0Þidt0 ¼ 0: ð7Þ

Integrating this velocity autocorrelation function once,

νðtÞ ¼
Z

t

0

hvð0Þvðt0Þidt0; ð8Þ

and using the equipartition theorem, hvð0Þvð0Þi ¼ kT=M,
as the initial condition, we get

M _νðtÞ þ
Z

t

0

Γðt − t0Þνðt0Þdt0 ¼ kT: ð9Þ

For the memory kernel to describe the delayed response of
the surrounding fluid, we choose the Ornstein-Uhlenbeck
process:

ΓðtÞ ¼ ðγ2=mÞ expð−γt=mÞ;

where γ is the friction coefficient proportional to the
viscosity of the medium and m is the mass of molecules
in the surrounding medium causing friction. Denoting
ζ−;þ ¼ ðγ=2mÞð1∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4m=M
p Þ, we obtain the solution

to Eq. (9):

νðtÞ ¼ kT
M

�
γ

mζ−ζþ
þ 1

ζþ − ζ−

��
1 −

γ

mζþ

	
e−ζþt

−
�
1 −

γ

mζ−

	
e−ζ−t

�

: ð10Þ
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From this we get the position autocorrelation function,

hxðtÞxð0Þi ¼ kT
Mðζþ − ζ−Þ

�
ζ−1þ

�
1 −

γ

mζþ

	
e−ζþt

− ζ−1−

�
1 −

γ

mζ−

	
e−ζ−t

�
: ð11Þ

This result was also derived by Nørrelykke [20] using a
different method. In the Einstein-Fick approximation,
xð0Þ ≈ xðtÞ, and this position autocorrelation function
reduces to 2Dt. Equation (11) generalizes SðtÞ outside
the Einstein-Fick limit. There are three distinct regimes:
overdamped (M > 4m), critically damped (4m ¼ M), and
underdamped (M < 4m). Standard Brownian motion of
large particles is strongly overdamped (M ≫ m). The
Einstein-Fick limit occurs when the ratio γt=m is suffi-
ciently large to cause appreciable decay of the Ornstein-
Uhlenbeck kernel. Using γ based on the Stokes’s law and
t ¼ 40 μs as the sampling time of the nuclear induction
signal, we find that typical values of this ratio for liquids are
γt=m ∼ 1, whereas for gases we have γt=m ≪ 1.
In the case of a gas, we may obtain the overall temper-

ature by modeling γ using the Stokes’s law, γ ¼ 3πηvd (ηv,
shear viscosity of the medium; d, sphere diameter), which
holds in the limit of low Reynolds numbers and invoking
Sutherland’s formula [21] for ηv:

ηv ¼
μ0ðT0 þ CÞðT=T0Þ3=2

T þ C
∼

T3=2

T þ C
; ð12Þ

where C is Sutherland’s constant for the gas, and μ0 is the
viscosity at temperature T0. At low temperatures, ηv ∼ T3=2,
whereas at high temperatures, ηv ∼

ffiffiffiffi
T

p
. By substituting this

into Eq. (12), we obtain at an expression for the envelope
function of the signal decay for a gas which does not rely on
the Einstein-Fick limit,

SðtÞ ¼ expð−γ2ng2κtÞ; ð13Þ

with

κðTÞ ¼ kTð−mζ2−ζþ −mζ−ζ
2þ þ ζ−γ þ ζ−ζþγ þ ζ2þγÞ

mMζ3−ζ
3þ

:

ð14Þ
The linewidth Δf follows the power law

Δf ∼
�
T−7=2; T < C
T−1=2; T > C

; ð15Þ

which predicts a temperature dependence that is opposite
(i.e., line narrowing with increasing temperature) to that
based on self-diffusion in the Einstein-Fick limit (1). An
analogous expression in the case of liquids can be derived
using a suitablemodel for the temperature dependence of the
viscosity in a liquid. However, this will not be needed here,

because we shall see that the linewidth is essentially
independent of temperature.
Measurements of Δf were carried out as a function of T

for three gases in the high temperature regime (T > C, as
determined by the Sutherland’s constant for each gas
[22–25]). The results are shown in Fig. 2. The average
exponent was found to be −0.47� 0.04, in agreement with
the theoretically predicted value of −1=2 in Eq. (15). The
low temperature regime (T < C) could not be investigated
due to experimental limitations of our instrument. A
temperature dependence of linewidth could not be detected
within experimental error for liquids, as shown in Fig. 3,
where we investigated nine different liquids over the range
180–450 K. We note that Sutherland’s formula [and
therefore, Eq. (13)] is applicable to gases only, so a lower
limit on temperature for the liquids is imposed by the
freezing points.
We now turn our attention to the gradient dependence of

the line broadening, which, according to Eq. (13), should
be proportional to g2. In experiments, however, we found
two regimes: in the limit of weak gradients, Δf ∝ g2,
whereas for strong gradients, Δf ∝ g1 (see Figs. 4 and 5).
The g2 gradient dependence is predicted according to
Eq. (13); however, the Δf ∝ g1 is not. Moreover, these
two regimes apply to both liquids and gases, according to
the results of Figs. 4 and 5. The emergence of the g1 regime
is likely due to the convolution of the line shape with the
sample shape that arises under an applied gradient and
forms the basis for frequency encoding in magnetic
resonance imaging. The full signal equation integrated
over the sample shape is
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FIG. 2. Validation of the T−1=2 law in the high-temperature
regime (T > C) for gases. The values of lnT shown correspond to
the temperature rangeT ¼ 180–490 K. Three different gaseswere
investigated: methane, acetylene, and propylene. The temperature
dependence on linewidth (scaled to gradient strength)was found to
be Δf ∝ T−0.47�0.04 (averaged over the three gases). Although
different values of the applied gradient g are shown here to avoid
overlapping of the curves (methane, g ¼ 0.15 G=cm; acetylene,
g ¼ 0.07 G=cm; propylene, g ¼ 0.1 G=cm), the scaled linewidth
is independent of g.
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SðtÞ ¼
Z

expðiγngxtÞ expð−αg2tÞρðxÞdx; ð16Þ

where ρðxÞ describes the spin density profile along the x
direction (sample shape), expðiγngxtÞ is the frequency
encoding, and expð−αg2tÞ is the line broadening according
to Eq. (13). For the particular case where the sample shape
ρðxÞ is Gaussian (a reasonable approximation for the
sensitivity profile of a saddle coil, such as the one used
in these experiments), the Fourier transform of Eq. (16)
with respect to time is a convolution:

~SðωÞ ¼ Gauss ⊗ Lorentz ¼ Voigt; ð17Þ

in which the Gaussian is ∼ expð−x2=2σ2Þ, and the
Lorentzian is ∼Γ2=ðx2 þ Γ2Þ. In terms of the full width at

half maximum of the Gaussian (fG ¼ 2σγg
ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
) and

Lorentzian (fL ¼ 2Γ ¼ 2αg2) profiles, the width of the
Voigt profile can be expressed as fv ≈ 0.5fL þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.2f2L þ f2G

p
. Thus, in the frequency encoding regime,

where sample shape effects dominate, the line broadening
behaves as g1 regardless of whether Eqs. (1) or (13) are used
to describe the diffusion effects. The frequency encoding
regime is reachedwhen the field of viewFOV ¼ fs=γng (fs,
sampling rate; g, gradient amplitude), becomes comparable
to the size of the rf-sensitive region (∼1 cm in our experi-
ments). Depending on the applied gradient strength, the
experimental FOV ranges from 0.6 to 1460 cm. The FOV
values corresponding to applied gradient (g) are indicated in
the upper horizontal axes of Figs. 4 and 5, where the two
regimes, g1 and g2, are indicated.

(a)

(b)

FIG. 3. Temperature dependence of linewidth (Δf) in liquids.
Nine different liquids were investigated, as shown by the different
symbols. The values of lnðTÞ shown span the temperature range
T ¼ 180–450 K. (a) For a fixed gradient strength of g ¼
0.05 G=cm, all linewidths were broadened by a similar amount,
hence the overlap in the data. At fixed g, the linewidth did not
exhibit any detectable dependence on temperature. (b) Increasing
applied gradient strength did not alter the independence of
linewidth on temperature. Applied gradient strengths were nitro-
methane (1 G=cm), dichloromethane (dcm, 0.5 G=cm), acetoni-
trile (0.4 G=cm), chloroform (0.3 G=cm), benzene (0.3 G=cm),
water (0.2 G=cm), trifluoroacetic acid (tfa, 0.1 G=cm), dimethyl
sulfoxide (dmso, 0.1 G=cm), acetone (0.05 G=cm). The symbol
in (a) refers to the same liquid as in (b).

FIG. 4. Dependence of linewidth (Δf) on applied gradient
strength (g) for gases. Three different gases were investigated.
Two different regimes are found: in the limit of strong applied
gradients, Δf scales as g1.0�0.1 whereas for weak gradients Δf
scales as g1.8�0.2. All data were acquired at ambient temperature.

FIG. 5. Dependence of linewidth (Δf) on gradient strength (g)
for liquids. Nine different liquids were investigated. Two different
regimes are found: in the limit of strong applied gradients, Δf
scales as g1.1�0.1, whereas for weak gradients Δf scales as
g2.0�0.2. All data were acquired at ambient temperature.
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We have presented a revised expression for line broad-
ening Eq. (13) that not only takes into account the
autocorrelation effects in the diffusion process, but also
suggests that self-diffusion processes in the NMR experi-
ment may be described using a stochastic GLE, at least, as
far as its temperature dependence is concerned. The GLE
approach (13) enables a convenient description of the
memory effects arising from the viscous drag effects,
which were essentially missing from the traditional descrip-
tion, Eq. (1). Such drag effects yielded the correct temper-
ature dependence for gases and have been used in a recent
publication to noninvasively map temperatures of gases
during catalytic reactions [26]. The method could also be
useful in the validation of heat-transfer models for gas-phase
thermalexchangesystems,whichcurrentlyrelyonnumerical
results from computational fluid dynamics models. Finally,
we note that since the decay function Eq. (13) involves the
first power of time instead of its third power Eq. (1), Eq. (13)
could have implications for the design of dynamic decou-
pling schemes for coherent quantum control [27].
See Supplemental Material [22] for experimental meth-

ods, data analysis details, and sample data.
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