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We develop a theory of electromagnons in CuO by combining a symmetry analysis based on irreducible
corepresentations, ab initio calculations, and simulations of spin dynamics using a model Hamiltonian and
the Landau-Lifshitz-Gilbert equation. We show that the electromagnon measured in [Jones et al., Nat.
Commun. 5, 3787 (2014)] with the electric field along the [101] direction originates from a magnetoelectric
coupling mediated by Dzyaloshinskii-Moriya interactions and consists of a rigid rotation of the Cu spins
around the axis defined by the electric field. Furthermore we predict the existence of a second
electromagnon originating from exchange striction and coupled to electric fields along the [010] direction
in the AF2 phase.
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Magnetoferrelectric materials have attracted consider-
able attention owing to their potential applications in novel
multifunctional devices [1,2]. An attractive feature of
magnetoferroelectrics is that optical phonons and spin
waves can become coupled via magnetoelectric inter-
actions, yielding a new elementary excitation called an
electromagnon [3]. This new excitation may open new
pathways for encoding and manipulating information using
light-spin interactions in quantum materials. Intuitively,
electromagnons can be understood as being magnons
coupled with a macroscopic electric polarization, which
in turn can respond to external electric fields. The polari-
zation and the magnon are coupled either by the
Dzyaloshinskii-Moriya (DM) interaction [4] or by the
exchange striction (ES) mechanism [5,6].
During the past decade, electromagnons have been

observed in several magnetoferroelectrics, in particular,
RMnO3 [7,8] and RMn2O5 [9], where R is a rare earth
element among Tb, Dy, Gd, Eu, and Y. In these systems the
electromagnon is thought to originate from the ES mecha-
nism. The electric polarization is associated with the
variation of the scalar exchange field ΔðSi · SjÞ ≈ Si·
ΔSj þ ΔSi · Sj, where Si represents the local magnetic
moments and ΔSi their variation due to the electromagnon.
At variance with the ES mechanism, for electromagnons to
originate from the DM interaction, the electric polarization
needs to be associated with the variation of the vector field
ΔðSi × SjÞ ≈ Si × ΔSj þ ΔSi × Sj. In the case of helical
magnets, it was proposed that the DM mechanism can
indeed couple magnons and electric fields perpendicular to
the spin plane [4]. Subsequent measurements on
Eu0.5Y0.45MnO3 supported this proposal [10].
Recently, CuO was found to be a high-temperature

multiferroic with TN ¼ 230 K [11]. Below TN, CuO exhib-
its multiferroicity in the so-called AF2 phase. This phase is
characterized by an incommensurate spin spiral with

modulation vector q2 ¼ ð0.506; 0;−0.483Þ in reciprocal
lattice coordinates, and a saturated electric polarization of
160 μC=m2 [11]. At temperatures below 213 K, CuO
exhibits a collinear magnetic phase called AF1, character-
ized by the modulation vector q1 ¼ ð0.5; 0;−0.5Þ. Very
recently, electromagnons with an excitation energy of
∼3 meV were observed in the AF2 phase of CuO for
electric fields along the [101] crystallographic direction
[12]. To the best of our knowledge, no detailed atomistic
theory of such an electromagnon has been developed. In
particular, the finding of Ref. [12] cannot be explained using
the mechanism of Ref. [4] since the [101] direction is not
perpendicular to the spin plane.
In this Letter we combine a symmetry analysis, ab initio

calculations, and simulations of spin dynamics based on a
model spin Hamiltonian in order to show that the electro-
magnon observed in CuO originates from the DM inter-
action. Additionally, our analysis indicates that it should be
possible to excite an ES electromagnon in the AF2 phase by
using an electric field along the [010] direction.
CuO crystallizes in a monoclinic lattice within the C2=c

space group. The primitive cell contains two Cu sublattices,
one located at y ¼ b=4 (I) and the other at y ¼ 3b=4 (II),
with b denoting the lattice parameter along [010], as shown
in Fig. 1. In order to describe the AF2 phase, we follow
Refs. [13,14] and approximate q2 by the commensurate
wave vector ~q2 ¼ ð0.5; 0;−0.5Þ. In this structure the spins
of sublattice I lie in the ac plane, while those of sublattice II
are parallel to the b axis. Within each sublattice the spins
are aligned ferromagnetically or antiferromagnetically
along the [101] and ½101̄� directions, respectively. The
complete spin structure can be seen in Fig. 2(a).
We start with a symmetry analysis to show that the

recently observed electromagnon in CuO [12] cannot
originate from an ES mechanism. A group-theoretical
analysis of the magnetic structures of CuO was given in
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Ref. [18] using the representations of the magnetic space
group C2=c10. Here we employ the alternative method
introduced in Ref. [19], which is based on the irreducible
corepresentations of the C2=c space group. Our approach is
simpler than that of Ref. [18] but equally rigorous. The Cu
spins in the AF2 magnetic structure can be described by

S ¼ ðûΔ1 þ b̂iΔ2Þeiq2·R þ c:c:; ð1Þ

where Δ1 and Δ2 are the two irreducible corepresen-
tations of the space group C2=c with a propagation vector

q2, û, b̂ are unit vectors parallel to the [101] and [010]
directions, respectively, and R denotes a lattice vector.
A comprehensive description of this formalism is given in
the Supplemental Material [15]. For an ES magnon to
couple with electromagnetic radiation, the exhange field
ΔðSi · SjÞ must correspond to a long wavelength excitation
(q ¼ 0); that is, the magnon wave vector has to be �q2. In
addition, an electromagnon is only present when ΔðSi · SjÞ
is nonzero, which only happens when the following
conditions are fulfilled: ΔSi is perpendicular to Si, it is
contained in the plane defined by û and b̂, and the spins of
the two sublattices rotate in opposite directions [15]. As a
result, the variation of the spin pattern corresponding to an
ES electromagnon can be described by

ΔS ¼ ðb̂Δ1 þ ûiΔ2Þe−iq2·R þ c:c: ð2Þ

By combining Eqs. (1) and (2), we find that the exchange
field S · ΔS transforms as Δ1 ⊗ iΔ�

2 ¼ Γ2, where ⊗
indicates the tensor product of corepresentations (see the
Supplemental Material [15] for representation and core-
presentation tables and tensor products). Since the Γ2

irreducible representation of the space group C2=c pre-
serves the twofold axis but not the c glide, an electric
polarization is only allowed along the b axis. This reason-
ing shows that the exchange-striction mechanism cannot
explain the observed electromagnon with electric field
along [101]. If we repeat the same reasoning for a
polarization along [010], we find that in this latter case
an ES electromagnon is allowed by symmetry. We note that
our choice of approximating the spin structure in the AF2
phase by a commensurate wave vector does not affect our
symmetry analysis since ð0.5; 0;−0.5Þ is not a special point
in the Brillouin zone.
At variance with the ES mechanism, a symmetry analysis

along the same lines shows that the DM interaction can
produce an exchange field ΔðSi × SjÞ which transforms as
Γ4 [15]. Since the Γ4 representation is compatible with an
electric polarization in the ac plane, we deduce that a DM
electromagnon is indeed allowed for electric fields
along [101].
The above symmetry considerations indicate that a DM

electromagnon is indeed allowed in CuO, although they do
not provide information on the strength of the DM
coupling, on the direction of the electromagnon polariza-
tion, and on the excitation energy. In order to obtain this
information, we now move to ab initio calculations of the
magnetic structure of CuO.
The magnetic properties of CuO can be described by the

following spin Hamiltonian [13,14]:

Ĥ ¼
X

ij

JijSi · Sj þ Dij · ðSi × SjÞ −
X

i

ðK · SiÞ2

þ Ĥme: ð3Þ

FIG. 1 (color online). Side view (a) and top view (b) of a ball-
and-stick model of CuO. The red spheres indicate O atoms, while
the blue and green spheres represent Cu atoms belonging to
sublattice I and sublattice II, respectively. The sublattices are
indicated in (a), and the unit cell boundaries are shown as gray
lines. The purple connectors indicate the superexchange inter-
actions summarized in Table IV of the Supplemental Material
[15]. (c) The black lines indicate D3 and D4, the arrow indicates
the direction of D4, and the open circle indicates one center of
inversion.

FIG. 2 (color online). Schematic illustrations of the AF2
magnetic structure of CuO within a 2 × 1 × 2 supercell and of
the magnetic response to an applied field. The purple arrows,
crosses, and dots denote the orientation of the spins in the ground
state. The red arrows indicate the direction of rotation of each
spin, and the green lines highlight the spin chains. (a) Response to
an electric field along [101]. The blue lines indicate the sign of
ΔðSi × SjÞ, with a single (double) line forþ (−). (b) Response to
an electric field along [010]. The blue lines indicate ΔðSi · SjÞ
with the same sign convention as in (a).
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In this expression the first term describes superexchange
interactions, as shown in Fig. 1. The second term describes
the DM interaction, with the indices of the vectors Dij
carrying the same meaning as for the exchange couplings.
The third term represents the single-ion anisotropy, and the
last term stands for the magnetoelectric coupling. The
interaction Hamiltonian Ĥme responsible for electromag-
nons in the AF2 phase will be determined below. The
exchange parameters J1, J2, and J7 in Eq. (3) stabilize a
collinear magnetic structure within each sublattice, while
J3 and J4 are responsible for the intersublattice interactions,
leading to frustration. The DM parameterD3 vanishes since
it connects two Cu atoms related by inversion symmetry, as
shown in Fig. 1(c) [20]. There is no symmetry restriction
for D4; in our model, D4 makes the spins in the two Cu
sublattices to be nearly perpendicular to each other. Our
chosen direction ofD4 is shown in Fig. 1(c). The anisotropy
parameter K has the easy axis along b and applies to
sublattice II only in order to stabilize the AF2 phase.
With reference to Eq. (3), the coupling between a

macroscopic electric field and magnons in CuO is made
possible by the intrinsic dependence of the coupling
parameters Jij and Dij on the atomic positions, which in
turn can be modulated by the coupling to an external field.
In principle, this could be accounted for by expanding the
coupling parameters to first order in the displacement, e.g.,
Jij ¼ J0ij þ ð∂Jij=∂uÞð∂u=∂EÞE, where J0ij are for the
equilibrium structure, u denotes a collective atomic dis-
placement, and E the electric field. In practice, since this
procedure is numerically intensive, we here proceed by
directly applying an electric field and then calculating the
corresponding change in the atomic positions and the spin
structure.
In order to perform these calculations, we used density-

functional theory in the generalized gradient approximation
of Perdew, Burke, and Ernzerhof [21], including Hubbard
corrections [22], as implemented in VASP [23,24]. The core-
valence interaction was described by means of the projector
augmented-wave method [25] and a plane waves basis set
with a kinetic energy cutoff of 37 Ry was employed. The
calculations were performed using a 2 × 1 × 2 supercell at
the experimental lattice parameters. The electric polariza-
tion was computed using the Berry phase method [26]. We
optimized the atomic geometry and found that the AF2
phase is a local energy minimum. By fixing the Hund
coupling constant to 1 eV and testing several Hubbard
parameters, we found that U ¼ 4 eV produces a static
electric polarization of 150 μC=m2, in agreement with
experiments. Accordingly, we only present results for this
value of U. The atomic displacements induced by an
applied electric field E were calculated as δτIα ¼P

Jβ K
−1
Iα;JβZ

�
JβEβ [27–29], where K represents the matrix

of force constants, Z� the Born effective charges, the capital
indices identify the atoms in the unit cell, and the Greek
indices indicate Cartesian directions. The Born charges and

the matrix of force constants were determined via density
functional perturbation theory [30], and the displacements
were obtained for an applied electric field of 109 V=m. This
choice ensures that the system remains in the local energy
minimum corresponding to the AF2 phase.
Given the experimental findings of Ref. [12] and the

symmetry analysis presented above, we proceed by inves-
tigating the magnetic response induced by electric fields
along the optical axes [101] and [010], respectively. Our
calculations indicate that the details of the variationsΔS are
sensitive to the calculations parameters. On the contrary, we
find that the variations of the scalar products ΔðSi · SjÞ and
of the vector products ΔðSi × SjÞ are relatively insensitive
to such details; hence, these can be used reliably for
analyzing the magnetic response to the electric field. We
find that electric fields along [101] and [010] induce the
changes ΔðSi × SjÞ and ΔðSi · SjÞ, respectively, with i and
j belonging to different Cu sublattices. This observation is
fully consistent with our symmetry analysis (above). In
particular, the variations ΔðSi × SjÞ corresponding to Cu
atoms i and j in different sublattices exhibit nonvanishing
components only along b, and alternating signs along
directions both a and b. This result is illustrated schemati-
cally in Fig. 2(a).
In order to validate this pattern, we performed the reverse

procedure: that is, we performed constrained spin-DFT
calculations by enforcing these patterns and determined the
corresponding polarization. In the case of the electric field
along the [101] direction, we consider a configuration
whereby the spins of sublattice II rotate around the axis
defined by the spin direction of sublattice I, as shown in
Fig. 2(a).
Figure 2 of the Supplemental Material [15] shows the

calculated electric polarization as a function of the spin
rotation angle θ. The calculated polarization is along [101],
in line with the experimental observations, and varies with
the angle as sin θ, in line with our expectations. If we
instead repeat the calculations by neglecting spin-orbit
interactions, the polarization is found to vanish. This is a
clear indication that the coupling between spin and polari-
zation along [101] in CuO finds its origin in the DM
interaction.
We now consider a polarization along the [010] direction,

as our symmetry analysis indicates that, in this case, we
should expect an ES electromagnon. When we apply an
electric field along [010], we obtain variations of the scalar
products ΔðSi · SjÞ exhibiting C2 symmetry, with ferro-
magnetic and antiferromagnetic signs alternating along the c
axis. These variations can be realized by considering out-of-
phase rigid rotations of the spin chains along the a direction
within the spin plane, with a wave vector q ¼ q2 þ ð0; 0; 1Þ.
This is shown schematically in Fig. 2(b). Using this pattern
in a constrained spin-DFT calculation, we verified that the
rotation of the spins induces an electric polarization along
[010]. This finding indicates that, in this case, we are in the
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presence of an ES electromagnon, consistent with our
symmetry analysis.
Based on our constrained spin-DFT calculations, we

propose the following interaction Hamiltonian for the
coupling between external fields and electromagnons in
CuO:

Ĥme ¼ Euα
X

i

½ðS4;i − S4;iþaÞ × ðS2;i þ S2;iþbÞ

þ ðS3;i þ S3;i−bÞ × ðS1;iþa − S1;iÞ�b
þ Ebβ

X

i

½ðS4;i þ S4;i−bÞ · ðS1;i − S1;iþcÞ

þ ðS2;i þ S2;iþbÞ · ðS3;i − S1;3þcÞ�: ð4Þ

Here the subscripts u and b indicate the components
along the unit vectors u and b, that is, the [101] and the
[010] direction, respectively; the subscripts in Sn;i indicate
the Cu atom in a unit cell following the convention in Fig. 2
and the unit cell, respectively. This interaction Hamiltonian
was obtained from the corresponding terms in Eq. (3) by
setting the signs according to the spin patterns obtained
here via constrained spin-DFT. The magnetoelectric cou-
pling constants appearing in Eq. (4) are defined as α ¼
u · ∂ðD3 þ D4Þ=∂E and β ¼ b · ∂J4=∂E, and the values
obtained from our calculations are reported in Table IV of
the Supplemental Material [15].
The two terms in Eq. (4) define the coupling of the

magnetic structure of CuO to electric fields along [101]
and [010], respectively. The first and second lines may give
rise to DM electromagnons and ES electromagnons, respec-
tively. In order to identify and characterize these excitations
within a fully dynamical framework, we proceed by solving
the Landau-Lifshitz-Gilbert equation based on the complete
spinHamiltonian givenbyEqs. (3) and (4).Weobtain [31,32]

ℏ
dSi

dt
¼ Si ×

∂Ĥ
∂Si

þ ℏαG
Si

jSij
×
∂Si

∂t ; ð5Þ

where t is the time, ∂Ĥ=∂Si represents the effectivemagnetic
field experienced by the spin Si, αG is the Gilbert damping
coefficent, and the norm of the spin is obtained from
jSij2 ¼ 1

2
ð1
2
þ 1Þ. Since the precise values of the parameters

in the spin Hamiltonian Ĥ of CuO are still under debate
[13,14,33,34], we simplify here the task of solving Eq. (5) by
considering average semiempirical parameters from the
literature [13,14,33,34]. The parameters adopted are reported
in Table IV of the Supplemental Material [15], and the
sensitivity of our results to this choice is discussed below.
Using these parameters and Monte Carlo simulations we
verified that the AF2 phase is indeed the ground state
magnetic structure, and the transition temperature matches
(by construction) the experimental TN ¼ 230 K. We solved
Eq. (5) using the fourth-order Runge-Kutta method [31,32],
by applying an electric field pulse at t ¼ 0, and by following

the evolution of the polarization at subsequent times. The
Fourier transformof thepolarization canbeused to extract the
imaginary part of the dielectric function ϵðωÞ, from which
electromagnon excitations can be identified. We repeated
this operation twice, for the initial electric field oriented along
the [101] and the [010] direction, respectively.
Figure 3(a) shows our calculated dielectric functions. In

the case where the applied electric field is along [101], we
can see a sharp resonance around 3 meV, which is
consistent with the experimental data displayed in the inset
of Fig. 3(a) [12]. The structure of the electromagnon
corresponding to this resonance can be analyzed by
following the real-time evolution of ΔSi after the pulse.
We obtain a phason mode at q2 (or at the Γ point in the spin
corotating frame), as shown schematically in Fig. 3(b). This
finding is consistent with theΔSi’s determined by the direct
approach and shown in Fig. 2.
In the case of an electric pulse along the [010] direction

we observe a resonance at 13.5 meV [Fig. 3(a)]. This
resonance corresponds to an electromagnon at q ¼ q2þ
ð0; 0; 1Þ, featuring an out-of-phase rotation of the spins
along the [101] direction. This excitation is schematically
illustrated in Fig. 3(c). The optical spectra reported in
Ref. [12] were recorded in the range 0–8 meV; therefore,
our present findings suggest that new experiments are
needed in order to possibly observe a second, weaker
resonance coresponding to an ES electromagnon at ener-
gies > 10 meV.
We tested the sensitivity of these results to the choice of

parameters in the spin Hamiltonian, as shown in Fig. 4 of

FIG. 3 (color online). (a) Electromagnon spectra calculated
using Eq. (5) and electric fields along the [101] (red solid line)
and the [010] (black solid line) direction, respectively. The inset
shows the experimental electromagnon spectrum of CuO [12].
(b) and (c) Schematic illustrations of the oscillations of the Cu
spins in each case.
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the Supplemental Material [15]. Since our parameters are
able to reproduce the measured Néel temperature, our
current estimate for the energy of the ES electromagnon
should be realistic.
Recently, a Heisenberg model with higher-order bilinear-

biquadratic coupling has been proposed for reproducing the
magnetic phase diagram of CuO without including DM
interactions [35]. Our present theory of the high-energy
electromagnon (which arises from ES) can naturally be
extended to the model of Ref. [35]. However, the low-
energy electromagnon is not captured by the higher-order
coupling terms of that model since they yield a vanishing
magnetoelectric coupling at first order. This reinforces the
need for including DM interactions in the study of electro-
magnons in CuO.
In summary, by combining a symmetry analysis based on

irreducible corepresentations, ab initio calculations, and
time-domain simulations of the magnetoelectric response
of CuO, we showed that the electromagnon measured in
Ref. [12] is of DM origin and corresponds to a phasonmode.
In addition, our study indicates that it should be possible to
observe a second electromagnon in CuO, originating from
the ES mechanism. We hope that the present investigation
will motivate further experiments to search for the high-
energy electromagnon predicted here. More generally, the
present work sets a blueprint for future studies of new
elementary excitations in complex magnetic materials.
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Multiferroics and Magnetoelectrics.” Calculations were per-
formed at the Oxford Supercomputing Centre and at the
Oxford Materials Modelling Laboratory.

[1] S.-W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).
[2] M. Fiebig, J. Phys. D 38, R123 (2005).
[3] G. Smolenskii and I. Chupis, Sov. Phys. Usp. 25, 475 (1982).
[4] H. Katsura, A. V. Balatsky, and N. Nagaosa, Phys. Rev. Lett.

98, 027203 (2007).
[5] R. Valdés Aguilar, M. Mostovoy, A. B. Sushkov, C. L.

Zhang, Y. J. Choi, S.-W. Cheong, and H. D. Drew, Phys.
Rev. Lett. 102, 047203 (2009).

[6] A. B. Sushkov, M. Mostovoy, R. V. Aguilar, S.-W. Cheong,
andH. D.Drew, J. Phys. Condens.Matter 20, 434210 (2008).

[7] A. Pimenov, A. A. Mukhin, V. Ivanov, V. Travkin, A.
Balbashov, and A. Loidl, Nat. Phys. 2, 97 (2006).

[8] R. Valdés Aguilar, A. B. Sushkov, C. L. Zhang, Y. J. Choi,
S.-W. Cheong, and H. D. Drew, Phys. Rev. B 76, 060404
(2007).

[9] A. B. Sushkov, R. V. Aguilar, S. Park, S.-W. Cheong, and
H. D. Drew, Phys. Rev. Lett. 98, 027202 (2007).

[10] Y. Takahashi, R. Shimano, Y. Kaneko, H. Murakawa, and
Y. Tokura, Nat. Phys. 8, 121 (2012).

[11] T. Kimura, Y. Sekio, H. Nakamura, T. Siegrist, and A. P.
Ramirez, Nat. Mater. 7, 291 (2008).

[12] S. P. P. Jones, S. M. Gaw, K. I. Doig, D. Prabhakaran, E.
Hétroy Wheeler, A. T. Boothroyd, and J. Lloyd-Hughes,
Nat. Commun. 5, 3787 (2014).

[13] G. Giovannetti, S. Kumar, A. Stroppa, J. van den Brink, S.
Picozzi, and J. Lorenzana, Phys. Rev. Lett. 106, 026401
(2011).

[14] G. Jin, K. Cao, G.-C. Guo, and L. He, Phys. Rev. Lett. 108,
187205 (2012).

[15] SeeSupplementalMaterialathttp://link.aps.org/supplemental/
10.1103/PhysRevLett.114.197201, which includes Refs.
[16,17], fordetails of the symmetryanalysis and spindynamics
simulations.

[16] C. Bradley and A. Cracknell, The Mathematical Theory
of Symmetry in Solids (Clarendon Press, Oxford, 1972).

[17] O. Kovalev, Representations of the Crystallographyc Space
Groups—Irreducible Representations, Induced Representa-
tions and Corepresentations (Gordon and Breach, Yverdon,
Switzerland, 1993).

[18] P. Tolédano, N. Leo, D. D. Khalyavin, L. C. Chapon, T.
Hoffmann, D. Meier, and M. Fiebig, Phys. Rev. Lett. 106,
257601 (2011).

[19] P. G. Radaelli and L. C. Chapon, Phys. Rev. B 76, 054428
(2007).

[20] T. Moriya, Phys. Rev. 120, 91 (1960).
[21] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.

77, 3865 (1996).
[22] A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys.

Rev. B 52, R5467 (1995).
[23] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
[24] G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169

(1996).
[25] P. E. Blochl, Phys. Rev. B 50, 17953 (1994).
[26] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651

(1993).
[27] J. Íñiguez, Phys. Rev. Lett. 101, 117201 (2008).
[28] A. Malashevich, S. Coh, I. Souza, and D. Vanderbilt, Phys.

Rev. B 86, 094430 (2012).
[29] A. Scaramucci, E. Bousquet, M. Fechner, M. Mostovoy,

and N. A. Spaldin, Phys. Rev. Lett. 109, 197203 (2012).
[30] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi,

Rev. Mod. Phys. 73, 515 (2001).
[31] M. Mochizuki, N. Furukawa, and N. Nagaosa, Phys. Rev.

Lett. 104, 177206 (2010).
[32] K. Cao, G.-C. Guo, and L. He, J. Phys. Condens. Matter 24,

206001 (2012).
[33] A. Filippetti and V. Fiorentini, Phys. Rev. Lett. 95, 086405

(2005).
[34] X. Rocquefelte, M.-H. Whangbo, A. Villesuzanne, S. Jobic,

F. Tran, K. Schwarz, and P. Blaha, J. Phys. Condens. Matter
22, 045502 (2010).

[35] K. Pasrija and S. Kumar, Phys. Rev. B 88, 144418
(2013).

PRL 114, 197201 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
15 MAY 2015

197201-5

http://dx.doi.org/10.1038/nmat1804
http://dx.doi.org/10.1088/0022-3727/38/8/R01
http://dx.doi.org/10.1070/PU1982v025n07ABEH004570
http://dx.doi.org/10.1103/PhysRevLett.98.027203
http://dx.doi.org/10.1103/PhysRevLett.98.027203
http://dx.doi.org/10.1103/PhysRevLett.102.047203
http://dx.doi.org/10.1103/PhysRevLett.102.047203
http://dx.doi.org/10.1088/0953-8984/20/43/434210
http://dx.doi.org/10.1038/nphys212
http://dx.doi.org/10.1103/PhysRevB.76.060404
http://dx.doi.org/10.1103/PhysRevB.76.060404
http://dx.doi.org/10.1103/PhysRevLett.98.027202
http://dx.doi.org/10.1038/nphys2161
http://dx.doi.org/10.1038/nmat2125
http://dx.doi.org/10.1038/ncomms4787
http://dx.doi.org/10.1103/PhysRevLett.106.026401
http://dx.doi.org/10.1103/PhysRevLett.106.026401
http://dx.doi.org/10.1103/PhysRevLett.108.187205
http://dx.doi.org/10.1103/PhysRevLett.108.187205
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.197201
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.197201
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.197201
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.197201
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.197201
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.197201
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.197201
http://dx.doi.org/10.1103/PhysRevLett.106.257601
http://dx.doi.org/10.1103/PhysRevLett.106.257601
http://dx.doi.org/10.1103/PhysRevB.76.054428
http://dx.doi.org/10.1103/PhysRevB.76.054428
http://dx.doi.org/10.1103/PhysRev.120.91
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevB.52.R5467
http://dx.doi.org/10.1103/PhysRevB.52.R5467
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.47.1651
http://dx.doi.org/10.1103/PhysRevB.47.1651
http://dx.doi.org/10.1103/PhysRevLett.101.117201
http://dx.doi.org/10.1103/PhysRevB.86.094430
http://dx.doi.org/10.1103/PhysRevB.86.094430
http://dx.doi.org/10.1103/PhysRevLett.109.197203
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/10.1103/PhysRevLett.104.177206
http://dx.doi.org/10.1103/PhysRevLett.104.177206
http://dx.doi.org/10.1088/0953-8984/24/20/206001
http://dx.doi.org/10.1088/0953-8984/24/20/206001
http://dx.doi.org/10.1103/PhysRevLett.95.086405
http://dx.doi.org/10.1103/PhysRevLett.95.086405
http://dx.doi.org/10.1088/0953-8984/22/4/045502
http://dx.doi.org/10.1088/0953-8984/22/4/045502
http://dx.doi.org/10.1103/PhysRevB.88.144418
http://dx.doi.org/10.1103/PhysRevB.88.144418

