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A microscopic formalism to calculate thermal transport coefficients is presented based on a thermal
vector potential, whose time derivative is related to a thermal force. The formalism is free from the
unphysical divergences reported to arise when Luttinger’s formalism is applied naively, because the
equilibrium (“diamagnetic”) currents are treated consistently. The mathematical structure for the thermal
transport coefficients is shown to be identical with that for the electric ones if the electric charge is replaced
by the energy. The results indicate that the thermal vector potential couples to the energy current via the
minimal coupling.
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Conversion of heat into electric and other currents and
vice versa is of essential importance from the viewpoint of
realizing devices with low energy consumption. Of recent
particular interest is heat-induced spin transport in the field
of spintronics, where spin current is expected to lead to
novel mechanisms for information technology, and to
devices with low-energy consumption due to weak or
the absence of Joule heating.
A hot issue in spintronics is the use of magnetic

insulators, which are suitable for fast magnetization switch-
ing and low-loss signal transmission. Insulators have,
however, a clear disadvantage that electric current cannot
be used for their manipulation. Instead, temperature gra-
dients become the most important driving force in inducing
spin transport. To study thermally induced spin transport
theoretically, a microscopic formulation is necessary for
a full understanding and for quantitative predictions. A
microscopic description is, however, not straightforward;
temperature gradients and thermal forces are macroscopic
quantities arising after statistical averaging, and thus it is
not obvious how to represent those effects in a microscopic
quantum mechanical Hamiltonian.
In 1964, Luttinger proposed a solution [1]. To describe

the effect of the temperature gradient, he introduced a scalar
potential Ψ, which he called a “gravitational” potential,
which couples to the energy density of the system E via an
interaction Hamiltonian

HL ¼
Z

d3rΨE: ð1Þ

Although the microscopic origin of the potential has not
been addressed, he argued that to satisfy the Einstein
relation the potential adjusts itself to balance the thermal
force, resulting in an identity ∇Ψ ¼ ∇T=T in the thermal
equilibrium. Owing to this trick, thermal transport coef-
ficients can be calculated by linear response theory with
respect to the field Ψ without introducing the temperature
gradient in a microscopic Hamiltonian. Another approach,

based on the Landauer-Büttiker formalism, was presented
by Butcher [2].
Luttinger’s method has been applied to study various

thermally induced electron transports [3–9], magnon trans-
port [10]. and thermally induced torque [11]. It turned out,
however, that a naive application often leads to apparently
wrong transport coefficients, which diverge as T → 0
[3,4,7]. In the case of the thermal Hall effect, the divergence
was identified to be due to a wrong treatment of the
equilibrium diamagnetic current induced by the applied
magnetic field, and it was found that the physical Hall
coefficient is obtained if one subtracts the equilibrium
magnetization current before applying linear response
theory [7]. A similar problem was reported recently for
thermally driven spin-transfer torques [11].
In the case of electrically driven transport, elimination of

the unphysical equilibrium contribution from the transport
coefficients is guaranteed by U(1) gauge invariance, which
represents charge conservation. In the presence of an
electromagnetic vector potential A, the physical electric
current has two components, a paramagnetic current (the
first term) and a diamagnetic current (the second term) as
j ¼ ðe=mÞhp̂i − ðe2=mÞneA, where hp̂i is quantum average
of the momentum density operator, ne is the electron
density, and e and m are the electron’s charge and mass.
The paramagnetic current contains an equilibrium contri-
bution arising from all the electrons below the Fermi level,
which turns out to be ðe2=mÞneA. This equilibrium con-
tribution thus cancels perfectly with the diamagnetic
contribution, leaving only the contribution from excitations
in the transport coefficients [12]. Obviously, a consistent
treatment of the two contributions is necessary for the
cancellation of the equilibrium contribution and for gauge-
invariant physical results. If one uses, instead of a vector
potential, a scalar potential to describe a conservative
electric field, the role of the diamagnetic current is not
clearly seen, and wrong results easily arise if an incon-
sistent treatment is employed.
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From those experiences in electrically induced transport,
the divergence in the thermally induced transport described
by Luttinger’s Ψ is expected to be due to an incorrect
treatment of the “diamagnetic” contribution [13]. What
Qin et al. [7] showed is that the diamagnetic effect is
consistently taken account of if the divergenceless magneti-
zation current is included. If one could construct a vector
potential representation of thermal effects, the diamagnetic
effect would be treated consistently and straightforwardly,
since the diamagnetic current is defined by the Hamiltonian
and the vector potential without ambiguity.
Temperature gradients exert a statistical force propor-

tional to ∇T, which is conservative, i.e., has no rotation
component. Still, one may introduce a rotationless vector
potential to describe the force. In the case of classical
charged particles described by a Hamiltonian H ¼
½ðp − eAÞ2=2m� þ VðrÞ (V is a scalar potential), the total
force is F≡ −e ∂A

∂t − ∇V if ∇ × A ¼ 0. Any rotationless
force can thus be represented by use of a vector potential
without introducing a scalar potential. In thermally driven
transport, a thermal force proportional to ∇T is represented
by a vector potential, which we call the thermal vector
potential.
The objective of this Letter is to propose a formalism

describing thermal effects by a thermal vector potential,
and to demonstrate that the formalism works perfectly for
a few simple cases of thermally driven electron and
energy transport, without yielding unphysical divergen-
ces. Since the “charge” to which the temperature gradient
couples is energy, the thermal vector potential couples to
the energy current density operator jE. We first carry out
a derivation of a thermal vector potential form of the
interaction Hamiltonian by looking for a Hamiltonian
equivalent to Luttinger’s Hamiltonian. Local thermal
equilibrium is assumed. We then derive expressions for
the electric current and energy current by use of con-
servation laws, and identify the diamagnetic currents. It is
shown that the diamagnetic currents remove the unphys-
ical equilibrium contribution to the transport coefficients.
The results satisfy the Wiedemann-Franz law. We shall
demonstrate that the obtained expressions for the currents
indicate the minimal coupling of the thermal vector
potential.
It was recently demonstrated by Shitade that a gauge

theory of gravity constructed imposing local space-time
translation symmetry contains a vector “gauge field” as well
as a scalar potential corresponding to that of Luttinger [14].
The model was applied to describe the thermal transport
of noninteracting electrons and the Wiedemann-Franz law
was shown to be satisfied. The origin of local translation
symmetry in the context of thermal transport was not
addressed.
In this Letter,we use the energy conservation law to derive

a vector potential representation of thermal effects, without
assuming invariance under local space-time translation.

We start with rewriting Luttinger’s Hamiltonian by the
use of the continuity equation for operators E and jE

_E ¼ −∇ · jE ð2Þ
as

HLðtÞ ¼
Z

d3r
Z

t

−∞
dt0jEðt0Þ · ∇Ψðr; tÞ; ð3Þ

wherewe usedGauss’s theorem assuming that no field exists
at r → ∞. This expression is not of the formof an interaction
between a vector potential and the energy current because
of the time integration. We here look for a Hamiltonian
HAT

that agrees with Eq. (3) when a long time average is
considered, namely,

R
∞
−∞dtHAT

¼R
∞
−∞dtHLðtÞ. The result is

HAT
≡ −

Z
d3r jEðr; tÞ · ATðtÞ; ð4Þ

where ATðtÞ≡
R
t
−∞ dt0∇Ψðt0Þ [15] is the thermal vector

potential, which satisfies

∂tATðr; tÞ ¼ ∇Ψðr; tÞ ¼ ∇T
T

: ð5Þ

The interaction Hamiltonian (4) is understood as repre-
senting the thermodynamic potential change when a static
temperature gradient is applied. In fact, the rate of the
change of the entropy S due to an energy current is [16]

_S ¼ −
Z

d3r
1

T
∇ · jE ¼ −

Z
d3r jE ·

∇T
T2

; ð6Þ

and this entropy change modifies the thermodynamic
potential E − TS − μN (E is the internal energy and N
is the electron number). The effective Hamiltonian describ-
ing a dc thermal force HS ≡ −TS is therefore (to linear
order in ∇T)

HS ¼ 1

T

Z
d3r

Z
t

−∞
jEðt0Þdt0 ·∇T: ð7Þ

This reduces to Eq. (3) after the replacement
∇Ψ → ð∇T=TÞ.
We now apply the thermal vector potential interaction (4)

to study thermal transport and demonstrate that the for-
malism works perfectly. We consider free electrons with
a quadratic dispersion, described by the Hamiltonian
H0≡

R
d3rE0, where E0≡ðℏ2=2mÞð∇c†Þð∇cÞ−μc†c is

the free electron energy density, μ is the chemical potential,
and c† and c are the creation and annihilation operators
of the electron, respectively. The energy current density
is derived by use of the energy conservation law (2).

For free electrons, ∇ · jð0ÞE ≡ −ði=ℏÞ½H0; E0ðrÞ�, and the
result is [17]
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jð0ÞE ¼ iℏ3

ð2mÞ2 ½ð∇
2c†Þ∇c − ð∇c†Þð∇2cÞ� − μ

e
jð0Þ; ð8Þ

where jð0Þ ≡ ð−ieℏ=2mÞc†∇↔c is the paramagnetic part of
the electric current density. We focus on the uniform
component of the current considering the case of a spatially
uniform temperature gradient, which reads (V is system
volume)

jð0ÞE;i ¼
ℏ
m

1

V

X
k

kiϵkc
†
kck; ð9Þ

where k is a wave vector and ϵk ≡ ðℏ2k2=2mÞ − μ is the
energy measured from the Fermi energy.
We now apply this interaction to study thermally driven

longitudinal electron transport on a basis of the diagram-
matic (Green’s function) formalism. Besides the interaction
Hamiltonian, we need to take account of the diamagnetic
current contribution proportional to AT . We derive it by
use of the charge conservation law _ρþ∇ · j ¼ 0 (ρ is
the electric charge density) taking account of the thermal
vector potential. Namely, we calculate a commutator
−ðie=ℏÞ½H0

AT
; c†c�≡∇ · jAT , and derive the expression

for jAT. The result of the uniform component is

jAT
i ¼ −

e
m
AT;j

1

V

X
k

γijk c
†
kck; ð10Þ

where

γijk ≡ ϵkδij þ
ℏ2

m
kikj: ð11Þ

As expected from Eq. (9), the diagrammatic calculation
is carried out by a straightforward replacement of charge e
in the electric field driven case [12] by energy ϵk. Including
the interaction with the vector potential to linear order, the
dc paramagnetic current is

jð0Þi ¼ eℏ
mV

X
kω

ϵijk

�
_AT;j

f0ðωÞ
2

ðϕkωÞ2−2AT;jfðωÞIm½ðgak;ωÞ2�
�
;

ð12Þ

where ϵijk ≡ðℏ2=mÞkikjϵk, _AT≡∂AT=∂t, ϕkω≡gak;ω−g
r
k;ω,P

ω ≡ R
dω=2π, Im denotes the imaginary part, and

fðωÞ≡ ½eβℏω þ 1�−1 is the Fermi distribution function
[β≡ ðkTÞ−1, kB being the Boltzmann constant]. The
retarded and advanced Green’s functions for a free electron
are denoted by grk;ω ¼ 1=½ℏω − ϵk þ ðiℏ=2τÞ� and gak;ω ¼
ðgrk;ωÞ�, where τ is the elastic lifetime. By use of
ðℏkj=mÞðgakωÞ2 ¼ ∂kjg

a
kω and integration by parts with

respect to k, we rewrite the last contribution using

X
k

ϵijk ½ðgakωÞ2 − ðgrkωÞ2� ¼ −
X
k

γijk ϕkω ð13Þ

to obtain

jð0Þi ¼ −
eℏ
mV

X
kω

_AT;jϵ
ij
k
f0ðωÞ
2

ðϕkωÞ2 − jAT
i ; ð14Þ

where jAT
i ¼ iðeℏ=mVÞAT;j

P
kωγ

ij
k fðωÞϕkω agrees with

the diamagnetic current [Eq. (10)]. The equilibrium
(diamagnetic) contribution is therefore eliminated from
the physical thermally induced electric current, obtaining
ji ¼ σTET;i, where

ET ≡ −
∂ATðr; tÞ

∂t ¼ −
∇T
T

ð15Þ

is the thermal field, and σT≡ðeℏ5=6m2Vτ2Þ×P
kωk

2ϵkf0ðωÞjgrkωj4 (assuming rotational symmetry for k).
The low temperature behavior is seen by a series expansion
(ΦkðωÞ≡ jgrkωj4)

Z
∞

−∞
dωf0ðωÞΦkðωÞ ¼ −Φkð0Þ −

π2

6
ðkBTÞ2Φ00

kð0Þ; ð16Þ

whereOðT4Þ is neglected.Sinceϵk ¼ 0on theFermi surface,
we have

P
kk

2ϵkΦkð0Þ ¼ 0 (to leading order in ℏ=ϵFτ). We
therefore see that σT ¼ OðT2Þ at T → 0 and the thermally
induced current vanishes at T ¼ 0.
We now study the thermally driven Hall effect and show

that the vector potential formulation does not lead to
unphysical results like the one reported in Luttinger’s
scheme [7]. We introduce the interaction with an electro-
magnetic vector potential HA ≡ −

R
d3rA · j to describe

the effect of the applied magnetic field, where
j ¼ jð0Þ þ jA þ jAT , jA ≡ −ðe2=mÞAc†c being the diamag-
netic current of electromagnetic origin. The electromag-
netic vector potential is treated as static but has a finite
wave vector, since its role here is to represent a static
magnetic field B ¼ ∇ × A. The thermal vector potential
has an infinitesimal angular frequency Ω and is spatially
uniform. The Hall current is calculated to lowest order, i.e.,
linear in both A and AT . It turns out that the leading
contribution is linear both in the angular frequency Ω and
in the wave vector q.
The contributions to the paramagnetic part of the current

jð0Þ are shown diagrammatically in Figs. 1(a) and 1(b).
[Diamagnetic currents shown in Fig. 1(c) vanish since A
and AT carry only either a finite angular frequency or a
finite wave vector in the present description.] The con-
tribution of Fig. 1(a) is
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jðaÞi ¼ −
e2ℏ4

m3V
ð∇mAjÞ _AT;l

X
kω

kikjγlmk ΦðHÞ
kω ; ð17Þ

where ΦðHÞ
kω ≡ Im½f0ðωÞðgrk;ωÞ2gak;ω þ ℏfðωÞðgak;ωÞ4�.

Because of the diamagnetic current due to the thermal
vector potential jAT we have an interaction vertex
−
R
d3rA · jAT , linear in both A and AT . The contribution

shown in Fig. 1(b) arises from this interaction vertex. It is

jðbÞi ¼ e2ℏ4

m3V
ð∇mAjÞ _AT;l

X
kω

kikmγ
jl
k Φ

ðHÞ
kω : ð18Þ

The total Hall current, jðHÞ ≡ jðaÞ þ jðbÞ, is finally obtained
as

jðHÞ
i ¼ ΘHðET × BÞ; ð19Þ

where ΘH ≡ ðe2ℏ4=3m3VÞPkωk
2ϵkΦ

ðHÞ
kω . We see that

the Hall current vanishes at T ¼ 0 [see Eq. (16)], as is
physically required. The vector potential formalism applied
straightforwardly therefore leads to the correct result,
in sharp contrast to Luttinger’s gravitational potential
formalism.
For consistency of the vector potential formalism, we

need to confirm that the diagmagnetic current arises also
for the energy current. This is not a trivial issue, since we
cannot invoke a gauge invariance concerning the energy
current, in contrast to the case of the electric current. In our
scheme, the diamagnetic contribution is explored again by
looking into the energy conservation law. In fact, including
the thermal vector potential interaction (4) in the left-hand
side of Eq. (2), we see that the energy current acquires a
diamagnetic contribution linear in AT . After a straightfor-
ward calculation, its uniform component is obtained as

jAT
E;i ¼ −

1

m
AT;j

1

V

X
k

γijT;kc
†
kck; ð20Þ

where

γijT;k ≡ ϵk

�
ϵkδij þ

2ℏ2

m
kikj

�
: ð21Þ

We see here that the matrix γijT;k for this energy current

correction satisfies γijT;k ¼ ð∂=∂kiÞ½kjðϵkÞ2�, and thus can-
cellation of the unphysical equilibrium contribution occurs,
in the same manner as the electric currents discussed
above. The total energy current density induced by
the thermal vector potential is jE ¼ −κ∇T, where κ≡
ðℏ=2VTÞðℏ=mÞ2PkωkikjðϵkÞ2f0ðωÞðϕkωÞ2. The coefficient
satisfies the Wiedemann-Franz law κ ¼ ðπ2=3ÞkB2TσB,
where σB is the Boltzmann conductivity.
We have confirmed that the thermal vector potential

formalism applied for various thermally induced transport
phenomena leads straightforwardly to physical transport
coefficients. The uniform contributions to the electric and
energy current densities we have derived are

ji ¼
eℏ
m

1

V

X
k

½ki − eAi − γijk AT;j�c†kck;

jE;i ¼
ℏ
m

1

V

X
k

½kiϵk − eγijk Aj − γijT;kAT;j�c†kck: ð22Þ

The key for direct access to physical results in the present
formalism is the particular relation between the interaction
vertex and diamagnetic contributions to currents, such
as γijk ¼ ∂kiðkjϵkÞ and γijT;k ¼ ð∂=∂kiÞ½kjðϵkÞ2�. We finally
show that these identities indicate that the total Hamiltonian
H, including the electric and thermal vector potentials, is of
the minimal form (to second order in the thermal vector
potential) [18]

H ¼ ℏ2

2m

X
k

ðk − eA − ϵk−eAATÞ2c†kck: ð23Þ

In fact, as is easily checked, −ðδH=δAiÞ¼ðeℏ=mÞðki−
eAi−γ

ij
k AT;jÞ to linear order of the vector potentials

(δH=δAi denotes a functional derivative), and thus the
formal definition of the current j≡ −ðδH=δAiÞ agrees with
Eq. (22). As for the energy current, it is formally defined

FIG. 1. Diagramatic representation of the contributions to the thermal Hall effect. Solid, wavy, and dotted lines denote the electron, the
thermal vector potential AT , and the electromagnetic vector potential A, respectively. Diagrams (a) and (b) correspond to contributions
of Eqs. (17) and (18), respectively, while contributions of diagram (c) vanish.
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by jE;i ≡ − 1
2
f_c†½δH=δð∇ic†Þ� þ ½δH=δð∇icÞ�_cg. By use of

the Heisenberg equation of motion for _ck and _c†k, we see
that this formal definition agrees with Eq. (22).
In the electromagnetic case, the minimal form is imposed

by a U(1) gauge invariance. For the thermal vector
potential, in contrast, there is no gauge invariance in the
strict sense since the energy conservation arises from a
global translational invariance with respect to time [19].
Still, our analysis indicates that the minimal form emerges.
This fact might be understood as due to a “gauge
invariance” as a result of the energy conservation law. In
fact, we have shown that Luttinger’s Ψ and the present AT
have the identical effect concerning steady state properties.
In other words, we may assign a part of the thermal force to
Ψ and the rest to AT , so that ∇T=T ¼ ∇Ψþ _AT . Thus, we
have a gauge invariance under a transformationΨ → Ψ − _χ
and AT → AT þ∇χ (χ is a scalar function). Such a gauge
transformation is generally defined for a vector field
coupling to a conserved current.
The thermal vector potential formalism applies to ther-

mal torque straightforwardly by replacing the electric
charge in the derivation of Ref. [20] by the energy. It is
easy to check that the thermal torque vanishes at T ¼ 0,
as is physically required.
To conclude, we have demonstrated that the calculation

of transport coefficients is straightforwardly carried out
based on a vector potential formalism. The formalism
would apply straightforwardly to the case of multibands
and to the interacting cases.
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