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We study the orbital angular momentum (OAM) Lz in two-dimensional chiral ðpx þ ipyÞν-wave
superfluids (SFs) of N fermions on a disk at zero temperature, in terms of spectral asymmetry and spectral
flow. It is shown that Lz ¼ νN=2 for any integer ν, in the Bose-Einstein condensation regime. In contrast, in
the BCS limit, while the OAM is Lz ¼ N=2 for the pþ ip-wave SF, for chiral SFs with ν ≥ 2, the OAM is
remarkably suppressed as Lz ¼ N ×OðΔ0=εFÞ ≪ N, where Δ0 is the gap amplitude and εF is the Fermi
energy. We demonstrate that the difference between the pþ ip-wave SF and the other chiral SFs in the
BCS regimes originates from the nature of edge modes and related depairing effects.
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The orbital angular momentum (OAM) Lz of chiral
superfluids (SFs) of fermions is a fundamental problem
which has been under intense investigation over several
decades [1–21]. The OAM is a direct manifestation of the
broken chiral symmetry which was explicitly observed in
the A phase of liquid 3He [22]. It is also closely related to
the edge current, which has not been experimentally
observed so far in Sr2RuO4 despite the expectation from
the pþ ip-wave SF picture [23–25].
Most of the existing studies on the OAM have focused

on pþ ip-wave SFs. However, higher-order chiral SFs
such as dþ id, f þ if, …-wave ones are also of interest
[26,27] and have potential applications to candidates for
chiral superconductors, such as UPt3 [28], URu2Si2 [29],
and SrPtAs [30]. We focus on fundamental chiral SFs with
the pairing symmetry ∼ðpx þ ipyÞν which can be classified
by the integer angular momentum ν of each Cooper pair:
ν ¼ 1 corresponds to pþ ip, ν ¼ 2 to dþ id, and so on. In
fact, as we will demonstrate in this Letter, there is an
unexpected fundamental difference between the pþ ip-
wave and higher-order chiral SFs with respect to the OAM;
thus, it is essential to consider the higher-order ones as well,
for a complete understanding of the problem.
The main issue with the OAM is that different viewpoints

lead to different predictions for it, resulting in an apparent
paradox [18]. One argument is that, since each Cooper pair
has the OAM ν, Lz ¼ νN=2 where N is the total number of
fermions. There is, however, a different argument starting
from the normal (nonsuperconducting) Fermi liquid, which
has Lz ¼ 0: since only the low-energy fermions near the
original Fermi surface would be affected, Lz should be
suppressed as ðΔ0=εFÞγN=2 with γ > 0, where Δ0 is the
pairing gap amplitude and εF is the Fermi energy.
Of course, the analysis did not stop at the hand-waving

arguments, and many calculations have been carried
out based on various schemes, leading to different results.

We note that, in the limit of strong pairing of fermions,
the superfluid phase may be understood as a result of
Bose-Einstein condensation (BEC) of bosonic molecules.
In this limit, it would be natural to expect that Lz ¼ νN=2,
since each bosonic molecule carries the OAM ν. However,
this does not necessarily imply that the same value of Lz
persists in the regime where the superfluid is described by
Bardeen-Cooper-Schrieffer (BCS) theory. In fact, the
“weak-pairing” chiral SF in the BCS regime is a topologi-
cal superfluid with gapless edge states, while the “strong-
pairing” chiral SF in the BEC regime is nontopological
[31]. Thus, they are distinct superfluid phases and could
have very different values of Lz. Besides, experimental
investigation of the problem is difficult and there have
been very few reports so far [32,33]. Therefore, the
long-standing paradox is not yet resolved even for the
pþ ip-wave SF, let alone for the higher-order ones
with ν ≥ 2.
In this study, we investigate the problem in the simplest

ideal setting: two-dimensional (2D) chiral SFs confined on
a completely circular disk with a specular wall at zero
temperature, in the framework of a Bogoliubov–de Gennes
(BdG) Hamiltonian. For simplicity, we assume that the d
vector is d ¼ ð0; 0; dzÞ for the triplet states so that both the
singlet states and the triplet states can be discussed in a
parallel way; our analysis is also applicable to the spinless
fermions with slight modifications. We consider the
Hamiltonian Ĥ ¼ R

d2xψ†
σ½ðp2

x þ p2
yÞ=2m0 þ V − μ�ψσ þR

d2xψ†
↑Δðpx þ ipyÞνψ†

↓ þ ðH:c:Þ, where pj ¼ −i∂=∂xj,
m0 is the fermion mass, and μ is the chemical potential.
VðrÞ describes the wall of the container and is chosen to be
Vðr < RÞ ¼ 0 and Vðr > RÞ ¼ ∞ with a radius R. The
pairing gap amplitude for this Hamiltonian is given as
Δ0 ¼ kFνΔ, where kF is the Fermi momentum. There is no
texture in this model.
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The field operator is expanded in terms of a single
particle basis as ψσðrÞ ¼

P
nlcnlσφnlðrÞ where φ satisfies

½ðp2
x þ p2

yÞ=2m0 þ VðrÞ − μ�φnl ¼ εnlφnl [8,10]. Then, the
Hamiltonian becomes

Ĥ¼
X
l

X
nn0

�
c†n;lþν;↑

cn;−l;↓

�T�εn;lþνδnn0 ΔðlÞ
nn0

ΔðlÞ�
n0n −εn;−lδnn0

��cn0;lþν;↑

c†n0;−l;↓

�
;

ð1Þ

where ΔðlÞ
nn0 ¼

R
φ�
n;lþνΔðpx þ ipyÞνφ�

n0;−l, with an appro-
priate high-energy regularization. We denote the above

matrix as ðHðlÞ
BdGÞnn0 . The particle-hole symmetry connects

different l sectors as PHðlÞ
BdGP

−1 ¼ −Hð−l−νÞ�
BdG where P ¼

σxðiσyÞ in the Nambu space for odd (even) ν, which implies
that, although eigenvalues come in pairs, each of them lies
in different l sectors.
The OAM Lz corresponds to the operator

L̂z ¼
R
d2xψ†

σðxpy − ypxÞψσ , while the total particle num-

ber operator is given as N̂ ¼ R
d2xψ†

σψσ. These operators
are clearly defined for the present model and include all the
possible contributions. Neither L̂z nor N̂ commutes with
the BdG Hamiltonian (1) owing to the pairing term in the
Hamiltonian and is not conserved. Nevertheless, as pointed
out in Refs. [5,6], the combination

L̂z ≡ L̂z −
ν

2
N̂ ¼

X
nlσ

�
l −

ν

2

�
c†nlσcnlσ ð2Þ

commutes with the Hamiltonian (1) and thus is a conserved
quantity. Physically, L̂z represents the correction to the
OAM with respect to its “full” value νN=2. If the ground
state belongs to the zero eigenvalue sector of L̂z ¼ 0, it
follows that Lz ¼ νN=2. However, L̂z could take different
eigenvalues in the ground state, as it is clear by considering
the limit of Δ → 0, where Lz ¼ 0 and Lz ¼ −νN=2 hold.
Thus, the eigenvalue Lz of L̂z in the ground state is a

nontrivial quantity. In fact, it can still be calculated exactly
for the Hamiltonian (1). After the Bogoliubov transforma-
tion, the ground state jGSi is simply the vacuum with
respect to all the positive energy quasiparticles. The
eigenvalue Lz for jGSi can be obtained explicitly as

Lz ¼ −
1

2

X
l

�
lþ ν

2

�
ηl; ηl ¼

X
m

sgnEðlÞ
m ; ð3Þ

where fEðlÞ
m gm∈N are eigenvalues of HðlÞ

BdG and ηl is called
the spectral asymmetry [6,34–36]. From this formula, it is
clear that Lz can change only when there is a spectral flow;

namely, some of the eigenvalues of HðlÞ
BdG cross 0 as model

parameters are varied.

We first discuss the pþ ip-wave states (ν ¼ 1) for
which the spectrum is particle-hole symmetric about
l ¼ −1=2:

n
EðlÞ
m

o
m∈N

¼
n
−Eð−l−1Þ

m

o
m∈N

: ð4Þ

For simplicity, we treat the two parameters μ and Δ
independently as in Refs. [8,10,31] for a discussion of
the spectral flow. In the BEC regime, by numerically

diagonalizing HðlÞ
BdG, we obtain a fully gapped spectrum

as shown in Fig. 1(a) and find that ηl ¼ 0 for all l. As a
consequence, Lz ¼ 0 and thus follows Lz ¼ N=2, as
expected. However, the spectrum becomes less trivial if
the system is in the BCS regime. There, a single edge mode

with EðlÞ
edge ∝ −ðlþ 1=2Þ appears as seen in Fig. 1(c),

reflecting the topological nature of the phase
[6,26,27,31]. This edge mode is particle-hole symmetric

by itself EðlÞ
edge ∼ −ðlþ 1=2Þ ∼ −Eð−l−1Þ

edge and is hereafter
called a particle-hole-symmetric (PHS) edge mode. We
have numerically confirmed that ηl ¼ 0 for all values of l,
for a sufficiently large system. Namely, even when Δ0 is
arbitrarily small (but nonzero), we find Lz ¼ 0 in the
thermodynamic limit R → ∞, implying no reduction of
the OAM: Lz ¼ N=2 holds exactly.
A natural question arising here is why Lz remains 0 in

the BCS regime, despite the quantum phase transition
separating it from the BEC regime. Let us first consider the
limit μ ¼ −∞with a fixedΔ > 0, where Lz ¼ N ¼ 0 holds
trivially. Thus, we findLz ¼ 0 in this limit. Increasing μ, Lz
and N acquire nonzero values. However, as long as there is
no gap closing, Lz ¼ 0 and thus Lz ¼ N=2 still hold. This
gives a proof for the physical expectation that Lz ¼ N=2
holds throughout the BEC regime, which belongs to the
nontopological strong-pairing phase.
The value of Lz in the BCS regime (weak-pairing phase)

is more subtle, due to the presence of the quantum phase

-1

-0.5

 0

 0.5

 1

500-50

E
/ ε

F

l

(a)

-1

-0.5

 0

 0.5

 1

500-50

E
/ε

F

l

(b)

-1

-0.5

 0

 0.5

 1

500-50

E
/ε

F

l

(c)

-0.4

-0.2

 0

 0.2

 0.4

-0.5  0  0.5  1

E
/ε

F

μ /εF

(d)

FIG. 1 (color online). Examples of spectra in the pþ ip-wave
SF when kFR ¼ 80, kFΔ ¼ 0.2εF for (a) μ ¼ −0.3εF (BEC
regime), (b) μ ¼ 0, and (c) μ ¼ εF (BCS regime). (d) Evolution
of the spectrum for fixed l ¼ −30 as μ is changed.
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transition at μ ¼ 0 in the thermodynamic limit. At the
quantum phase transition, a gap closing is expected.
However, a careful examination reveals that every eigen-
value keeps its sign when μ is continuously varied from
μ ¼ −∞ to μ ¼ εF > 0. In fact, for the system defined on a
finite disk, the gap never closes. The gap does approach 0 at
the quantum critical point and also inside the BCS regime
giving rise to the gapless chiral edge mode but only in the
thermodynamic limit. The change of the eigenvalues when
μ is varied is shown in Fig. 1(d). The edge mode appears in
the BCS regime as a set of eigenstates separated from bulk
states. Although it converges to the linear gapless
dispersion, all the eigenvalues corresponding to the edge
mode for l ≤ −1 come off from the upper continuum of
bulk eigenstates and remain positive. Likewise, all the edge
mode eigenvalues for l ≥ 0 come from the lower con-
tinuum and remain negative. Since all the eigenvalues
depend continuously on μ, this is the only possible
evolution to generate the PHS edge mode, under the
particle-hole symmetry (4).
Therefore, although each of Lz and N changes from the

trivial values Lz ¼ N ¼ 0, Lz ¼ Lz − N=2 ¼ 0 always
holds; any correction factor like ðΔ0=εFÞγ mentioned in
the introduction cannot arise. We note that this is also true
for a physical process where μ and Δ are simultaneously
tuned to keep N constant. Our argument only relies on the
formation of the PHS edge mode separated from the bulk
eigenstates, which is valid for a sufficiently large system
size. The conclusion of our analysis largely agrees with the
recent related calculations on pþ ip-wave SFs [10–13] but
clarifies why Lz is exactly given by N=2 even for
small Δ0=εF.
Next, we move to the dþ id-wave states for which the

spectrum is particle-hole symmetric about l ¼ −1. We have
numerically confirmed that ηl ¼ 0 for all l in the BEC
regime and obtain Lz ¼ 0, i.e., Lz ¼ N. On the other hand,
a dþ id-wave BCS state is known to have two non-
degenerate edge modes at one boundary as visualized in
Fig. 2(a) [37]. Each edge mode is particle-hole symmetric
with the other branch but not symmetric by itself; we call
them non-PHS edge modes. Their dispersion relations are

given as EðlÞ
edge1;2 ∝ −ðl − l1;2Þ, where l1;2 ≠ −1ðl1 < l2Þ are

the “Fermi angular momenta” where the edge modes cross

the zero energy. The particle-hole symmetry requires
l1 þ 1 ¼ −ðl2 þ 1Þ. Interestingly, for this spectrum, we
find that some of the ηl’s become nonvanishing. This can be
understood in terms of the spectral flow staring from the
BEC regime where ηl ¼ 0. As in the case of the pþ ip-
wave SF, ηl ¼ 0 remains valid up to the critical point, since
the gap remains open in the entire BEC regime. As we
move into the BCS regime, two non-PHS edge modes
develop as in Fig. 2(a). During this evolution, the Fermi
angular momenta evolve from l ¼ −1 to nonvanishing
values l1;2. This induces spectral flows for the angular
momenta l in the range l1 < l < l2, except at l ¼ −1. An
example of the spectral flow at a fixed value of l is shown in
Fig. 2(c): ηl changes sign exactly when a Fermi angular
momentum passes through this l.
This picture can also be confirmed in an analytic

expression of the edge mode dispersions as functions of
μ > 0, in the limit of a large disk radius R [38]. In this limit,
the edge of the disk corresponds to the boundary of a semi-
infinite plane, with the momentum parallel to the boundary
k∥ related to the angular momentum l by k∥ ≃ l=R. In the
BCS regime 0 < μ, the dispersion of the edge modes is
given as E2

edge ¼ ½Δ2
0ε

2
F=ðε2F þ Δ2

0Þ�ð2k2∥=k2F − μ=εFÞ2, by
solving the BdG equation [38]. The condition Eedge ¼ 0

then determines the Fermi wave vector kF∥ of the edge

modes as k2F∥ ¼ ðkF=
ffiffiffi
2

p Þ2μ=εF. This indeed demonstrates
that the Fermi wave vector kF∥ evolves from 0 to a
nonvanishing value, as μ is increased into the BCS regime
μ > 0. This confirms the spectral flow for l1 < l < l2 as
found numerically for ν ¼ 2.
In fact, spectral flows, and ηl ≠ 0 as a consequence, are

common properties of the higher-order pairing states with
ν ≥ 2 in the BCS regime. There, nonvanishing ηl are found
numerically and can be understood generally in terms of
edge modes: ηl changes by�2when a non-PHS edge mode
branch crosses zero energy, while a PHS edge mode does
not contribute to ηl.
In the BCS regime for ν ≥ 2, nonvanishing ηl implies

Lz ≠ 0. As a consequence, Lz is in fact strongly suppressed
from the “full” value νN=2, in the BCS limit Δ0 ≪ εF. To
see this, we evaluate the actual value of Lz using Eq. (3),
with the observations made above. By considering the limit
of a large disk, the Fermi angular momenta lj can be written
in terms of the Fermi wave number parallel to the boundary

kðjÞF∥ as lj ≃ RkðjÞF∥. Within the quasiclassical formulation,
which is legitimate for the BCS limit, we findP

ν
j¼1ðkðjÞF∥Þ2 ¼ νk2F=2 [38]. Thus, in the leading order in

N and Δ0=εF, we obtain

Lz ≃ −
1

2

Xν
j¼1

lj2 ¼ −
1

2

Xν
j¼1

ðRkðjÞF∥Þ2 ¼ −
νN
2

: ð5Þ

Since Lz ¼ Lz − νN=2, the OAM is evaluated to be
Lz ¼ N ×OðΔ0=εFÞ in the BCS limit for ν ≥ 2, where
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FIG. 2 (color online). Examples of (a) a spectrum in the dþ id-
wave SF and (b) the spectral asymmetry ηl for kFR ¼ 80,
k2FΔ ¼ 0.2εF, μ ¼ εF (BCS regime). (c) Spectral flow for fixed
l ¼ −30ð> l1 ¼ −56Þ as μ is changed.

PRL 114, 195301 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
15 MAY 2015

195301-3



the OðΔ0=εFÞ term represents possible additional contri-
butions which are beyond the quasiclassical approximation.
Indeed, numerical calculations of the OAM give Lz=N ∼
oð0.01Þ when N ∼Oð1000Þ for ν ¼ 2; 3; 4 in an extended
range in the BCS regimes withΔ0=εF ≲ 0.2, supporting the
above quasiclassical analysis. Therefore, the naive evalu-
ation Lz ¼ νN=2 fails for the chiral SFs in the BCS regime
with ν ≥ 2, even though it gives the correct value for the
pþ ip-wave states. That is, for ν ≥ 2, Lz is strongly
suppressed as if in the naive weak-pairing picture where
fermions only near the Fermi surface atΔ ¼ 0 contribute to
Lz. However, our findings, in particular, the stark difference
between the pþ ip and higher-order (ν ≥ 2) pairing cases,
make it clear that the suppression cannot be understood by
any of the arguments found in existing works. Our analysis
is based on the robustness of the spectral asymmetry ηl and
does not rely on assumptions and approximations used in
the earlier papers, such as derivative expansions, which
might fail to describe the correct physics, especially around
boundaries where the edge modes are located [11]. We
emphasize that the well-known topological protection of
the existence of ν edge modes is not sufficient for
determining the OAM, which depends on more detailed
structures of the edge modes. In this sense, the OAM Lz is a
surface-dependent quantity in the BCS regimes.
Finally, let us discuss why the OAM is suppressed for

ν ≥ 2 but not for ν ¼ 1, in terms of the ground-state wave
function. A general expression [38,39] for the ground state
of a BdG Hamiltonian is given as jGSi ¼ N ⊗l jGSil,
where

jGSil ¼

0
B@YnðlÞ↑

j¼1

~c†j;lþν;↑

1
CA
0
B@YnðlÞ↓

j¼1

~c†j;−l;↓

1
CA

× exp

0
B@X

j>nðlÞ↑

X
j0>nðlÞ↓

~c†j;lþν;↑F
ðlÞ
jj0 ~c

†
j0;−l;↓

1
CAj0i: ð6Þ

Here, j0i is the vacuum for cnlσ and N is a normalization

constant, ~cjlσ is a linear superposition of fcnlσgn, and nðlÞ↑ ,

nðlÞ↓ are non-negative integers. The ground state of a BdG
Hamiltonian is often assumed to have a pure exponential

form [nðlÞσ ¼ 0 in Eq. (6)], which implies that all the
fermions are paired and thus Lz ¼ νN=2. For ν ¼ 1, the
ground state (of a sufficiently large system) is indeed
reduced to the pure exponential form, implying the full
OAM Lz ¼ N=2. However, the ground state of a BdG
Hamiltonian generally takes the form of Eq. (6). A non-

vanishing nðlÞσ signals the existence of unpaired fermions,
which contribute to the reduction of the OAM.

In fact, we can derive [38] the identity ηl ¼ 2ðnðlÞ↓ − nðlÞ↑ Þ,
which explicitly shows that the unpaired fermions are

necessary for the spectral asymmetry and hence for the
reduction of the OAM. We can determine the numbers of
unpaired fermions explicitly [38]. For ν ¼ 1, there are no

unpaired fermions (nðlÞ↑ ¼ nðlÞ↓ ¼ 0) as mentioned earlier.

For ν ≥ 2, nðlÞ↑ > 0, nðlÞ↓ ¼ 0 for l1 < l < −ν=2, and

nðlÞ↑ ¼ 0, nðlÞ↓ > 0 for −ν=2 < l < lν, where l1 and lν are,
respectively, the smallest and largest Fermi angular
momenta. Therefore, the unpaired fermions generally carry
angular momenta opposite to the given chirality, leading to
the reduction of Lz from the full value νN=2. This depairing
effect is associated with the formation of the non-PHS edge
modes, signifying the fundamental difference between the
ν ¼ 1 and ν ≥ 2 cases.
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Note added.—Recently, two related papers appeared on the
arXiv. Volovik [43] confirmed our results on the OAM of
pþ ip-wave and higher-order chiral superfluids. In addi-
tion, he introduced a “parity violated boundary condition”
with a phase factor, as a generalization of our hard-wall
boundary condition. He showed that, under such a boun-
dary condition, the OAM would be changed from Lz ¼
N=2 even for a pþ ip-wave chiral superfluid. Huang,
Taylor, and Kallin [44] discussed the edge current in chiral
superfluids and found a vanishing of the edge current,
which leads to the suppression of the OAM, for ν ≥ 2, also
in agreement with our results where they overlap.
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