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We show that a single I ¼ 1 spin-parity JPC ¼ 1þþ a1 resonance can manifest itself as two separated
mass peaks, one decaying into an S-wave ρπ system and the second decaying into a P-wave f0ð980Þπ
system, with a rapid increase of the phase difference between their amplitudes arising mainly from the
structure of the diffractive production process. This study clarifies questions related to the mass, width, and
decay rates of the a1 resonance raised by the recent high statistics data of the COMPASS Collaboration
on a1 production in πN → πππN at high energies.
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New insight into the properties of light mesons is
emerging from the unprecedented statistical precision of
the COMPASS experiment at CERN, where beams of
190 GeV pions interact with nucleon targets [1]. These data
are bound to enrich (if not challenge) our understanding of
low-energy meson spectroscopy while, in addition, uncov-
ering possible evidence for long-sought states of the strong
interaction QCD potential beyond the quark-antiquark
states of the standard model.
We focus on the isospin 1 axial-vector resonance a1

[reported in the Particle Data Compilation as að1Þð1260Þ
[2]]. Evidence is presented in the COMPASS data for a
new narrow JPC ¼ 1þþ axial-vector state, strongly coupled
to the πf0ð980Þ system. This observation of a peak in the
two-body πf0 P-wave intensity at a mass of 1.42 GeV,
combined with a phase motion close to 180° with respect to
other waves, appears at face value to mean that a second
axial-vector resonance is present, close in mass to the
known broad a1ð1260Þ that couples mainly to the πρ
system [1]. While these three features, i.e., two peaks at
different masses and a rapid phase variation, are clearly
present, there are reasons to be surprised, among which
we mention the following. (i) The a1ð1260Þ is a central
member of the axial-vector nonet, which together with
the JP ¼ 0−; 1−, and 0þ form the ground state of the light
quark-antiquark spectrum. A newcomer in the family
would be difficult to accommodate. (ii) It is peculiar to
have two JPC ¼ 1þþ three-pion states, with identical
quantum numbers, close in mass (within a full width of
each other), with orthogonal decay modes, without the
presence of some new quantum number. The K0

S − K0
L

system led to decisive discoveries in fundamental physics;
neutrino mixing is a spectacular current example. However,
in the a1 case, we see no candidate for a distinguishing
quantum number.

Our basic approach to high-energy forward production
of three-pion states in pion-nucleon interactions is the
Drell-Hiida-Deck mechanism [3]. This model has been
studied extensively in the production of the JP ¼ 1þ ρπ
system [4], and here we extend the analysis to the JP ¼ 1þ
f0ð980Þπ system. An important difference is that, whereas
the ρπ system is in an orbital S-wave state, the f0ð980Þπ is
in an orbital P-wave state. Since the two-body ρπ and f0π
systems are strongly interacting, we must modify the Deck
mechanism with the proper final-state interactions due to
the rescattering of these systems. This is an inescapable
physical consistency condition of the entire analysis.
The unitary coupled-channel approach that we developed
in Refs. [5–7] should be an ideal way to show whether one
resonance suffices or whether the COMPASS data do
require two nearby resonances with the same axial-vector
quantum numbers in the three-pion system.
In this Letter, we demonstrate that a single resonance

suffices to explain the data and that the f0π decay mode
of the usual a1 is being observed for what appears to be
the first time [2]. Our method can be used to determine
new values for the mass and width of the a1, information
important for lattice QCD and other calculations of the
hadron spectrum.
Two-channel Deck amplitudes.—We follow closely

Refs. [4,5]. We consider the Deck amplitudes for produc-
tion of the quasi-two-body systems πρ and πf0 at small
momentum transfer and high incident energy. We denote
these Tρ

D ¼ TD (πN → πρN) and Tf
D ¼ TD (πN → πf0N).

The reactions are represented in Figs. 1(a) and 1(b).
The πρ case has been studied at length. Its amplitude

[cf. Eq. (2.1) of Ref. [5]] is

Tρ
D ¼ gρππKρðt2Þ

1

m2
π − t2

is13ebt1σπp; ð1Þ
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where gρππ is the ρππ coupling constant [g2=ð4πÞ ¼ 2.4],
Kρ is the magnitude of the incident pion momentum in the
ρ rest frame [4], b is the slope of the πN elastic diffraction
peak, and σπp is the πp total cross section. The invariants
s13, t1, and t2 are labeled in Fig. 1(a).
Similarly, the πf0 production amplitude is

Tf
D ¼ gf0ππ

1

m2
π − t2

is13ebt1σπp: ð2Þ

Choosing the average value of the f0 → ππ width of
60 MeV, we obtain a numerical value gf0ππ ≃ 1.45 GeV.
The other factors in Eq. (2) relative to Fig. 1(b) have the
same meaning as in Eq. (1).
The ρπ Deck background has been well studied, where,

by background, we mean the amplitude before any final-
state interactions are included. We refer to Ref. [5] and
extract what is useful in the present analysis. We work in
the final ρπ (f0π) center of mass frame; M is the invariant
mass of this system. In the limit of forward production
ðt1 → 0Þ and large s, Eq. (1) produces the ρπ system
predominately in an S wave [4], used in previous calcu-
lations (e.g., Ref. [5]).
However, the JP ¼ 1þ f0π system is in an orbital P

wave. To address f0π, we must extend the partial wave
extraction calculations to finite values of t1 and s. We
present the complete calculation of these amplitudes else-
where [8]. The important feature is that the higher partial
wave amplitudes are of the order of t1=M2 or M2=s with
respect to the dominant S wave. An immediate conse-
quence is that f0π P-wave production should have a
noticeably smaller rate than the ρπ S-wave process, as is
borne out in the complete calculation and exhibited by the
COMPASS data, where the intensity of the f0π peak at
1.42 GeV is lower than that of the ρπ peak at 1.26 GeV by a
factor of the order of a few 10−3.
In the COMPASS experiment, the value of the square

of the invariant total energy is s ¼ 380 GeV2, while
the momentum transfer t1 in the smallest bin is
t1 ∈ ½−0.1;−0.13� GeV2. We are interested in values of
M ∼ 1–2 GeV. Since jt1j=M2 ≫ M2=s, the only relevant
kinematic corrections come from the momentum transfer
dependence. We choose to work at the fixed value
t1 ¼ −0.1 GeV2, and we checked that within the first t
bin (t1 ∈ ½−0.1;−0.13� GeV2) our results do not vary

appreciably. A convenient dimensionless expansion param-
eter is

Θ1 ¼
t1

ðM2 −m2
πÞ
: ð3Þ

The JP ¼ 1þ S-wave ρπ background amplitude is, to
first order in Θ1,

TDeck
S ¼ −

s
ðM2 −m2

πÞ

×

�
1 −

1

2
Θ1

�ð3M2 þm2
πÞ

ðM2 −m2
πÞ

−
Eρ

Eπ

��
1

y
ln
1þ y
1 − y

��
;

ð4Þ
where Eπ and Eρ are the pion and ρ energies in the ρπ rest
frame, respectively, and where y ¼ pπ=Eπ is the ρπ phase
space factor, pπ being the pion momentum in the ρπ
rest frame.
The JP ¼ 1þ P-wave f0π amplitude is, at the same

order in Θ1,

TDeck
P ¼ þ 3

2

s
ðM2 −m2

πÞ
Θ1

×

�ð3M2 þm2
πÞ

ðM2 −m2
πÞ

−
Ef0

Eπ

��
−2
y

þ 1

y2
ln

�
1þ y
1 − y

��
;

ð5Þ
where Eπ and Ef0 are the pion and f0 energies, respectively,
pπ the pion momentum in the f0π rest frame, and, as
above, y ¼ pπ=Eπ .
Equation (5) is a major clue to our investigation.

The right-hand side contains the factor ð3M2 þm2
πÞ=

ðM2 −m2
πÞ − Ef0=Eπ . This factor is negative at low values

of M (since mf0=mπ > 3), but it vanishes near M ≃
1.38 GeV and becomes positive afterward. Furthermore,
if we give this term some small imaginary part, its phase
will switch suddenly from −180° to zero. This sudden and
rapid phase variation is not a dynamical effect in the sense
of a resonant phase, but it originates in the structure of the
dynamical process by which the f0π state is produced.
Another interesting qualitative feature of Eq. (5) is that it
grows in the region of interest (M ∼ 1.2–1.4 GeV) and
therefore tends to push a resonance peak upward in M.
Keeping in mind the parameters introduced in Eqs. (1)

and (2), our two JPC ¼ 1þþ amplitudes are

�
TDeckðρπÞ
TDeckðf0πÞ

�
¼ 2i

ffiffiffi
2

p
sN

ðM2 −m2
πÞ

 
gρππKρσπp ~Tρπ

gf0ππσπp ~Tf0π

!
; ð6Þ

where ~Tρπ and ~Tf0π can be read off from Eqs. (4) and (5).
The structure remains the same after we unitarize. The
normalization factor N is irrelevant for present purposes
and is taken equal to 1 here.
Unitarization.—For theoretical and technical details

about multichannel final-state unitarization, we refer to

FIG. 1. Deck production processes for (a) ρπ and (b) f0π.
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the literature, in particular, to Ref. [9], where the general
analysis may be found, and to Ref. [5], where a specific
application is made. We recall that if S is the (two-channel)
strong interaction S matrix, then the unitarized Deck
amplitude T D, which we can write as a two-dimensional
vector as in Eq. (6), has a right-hand unitarity cut along
which it satisfies the relation

T D
þ ¼ ST D

−; ð7Þ
T D

þ and T D
− being the values of the unitarized Deck

amplitude above and below the cut, respectively.
Our basic assumption is that there is a single a1 resonance

whose (unique) second-sheet pole parameterswe determine.
Since we are dealing with a two-channel case, we para-
metrize the coupled ρπ and f0π final-state interactions
(or rescattering) via this resonance. In order to do this,
we introduce a K matrix, as in Eq. (3.14) of Ref. [5]:

KðM2Þ ¼

0
B@

g2
1

s1−M2

g1g2
s1−M2

g1g2
s1−M2

g2
2

s1−M2

1
CA: ð8Þ

The crucial tool to treat coupled-channel final-state
interactions is a D matrix, related directly to the S matrix.
It is presented explicitly in Eq. (3.15) of Ref. [5]:

DðM2Þ ¼ 1

D0ðM2Þ
�
g1 −g2ðs1 −M2 − α2C2Þ
g2 g1ðs1 −M2 − α2C1Þ

�
; ð9Þ

where α2 ¼ g21 þ g22, C1 and C2 are Chew-Mandelstam
functions [10], and the energy denominator function
D0ðM2Þ is

D0ðM2Þ ¼ ½s1 −M2 − g21C1ðM2Þ − g22C2ðM2Þ�: ð10Þ
The function D0ðM2Þ contains all the information (that we
put in) on the coupled-channel ρπ-f0π strong interaction.
It is an analytic function which possesses the ρπ and
f0π branch cuts from ½mρ þmπ�2 to infinity and from
½mf0 þmπ�2 to infinity. Its second sheet pole determines
the nominal position and width of the a1 resonance.
As in Ref. [5], the unitarized Deck amplitude with

resonant rescattering corrections taken into account is

Tu
DðM2Þ ¼ TDðM2Þ − 1

π
DðM2Þ

×
Z

∞

ðmρþmπÞ2
ds0

ImDðs0ÞTDðs0Þ
ðs0 −M2Þ : ð11Þ

Here Tu
DðM2Þ is a two-dimensional vector, and TDðM2Þ is

the “background” Deck amplitude discussed above.
Direct production contribution.—In addition to its mani-

festation through final-state interactions, the a1 may also
be produced directly in a diffractive process πp → a1p.
For direct production, we choose

Tdirðs;M2Þ ¼ isσπpG

D0ðm2Þ
�
f1
f2

�
; ð12Þ

where G represents the diffractive coupling of the π and the
a1, and f1 and f2 are the couplings of the a1 in the ρπ and
f0π channels, respectively. Our final amplitude is

TðM2Þ ¼ Tu
DðM2Þ þ Tdirðs;M2Þ: ð13Þ

In the one-channel case exemplified by ρ photoproduction
[11], the interference of these two terms can shift the
apparent peak position of the ρ.
Analysis and results.—Some salient points can be made

short of a detailed fit to the data. We first select appropriate
values of the a1 parameters that provide a good global
description. The COMPASS results fix these parameters
more stringently than when we dealt only with the S-wave
ρπ system (and other S-wave channels, such asK�K̄). Here,
the acceptable mass and width of the a1, defined by the
position of the second sheet pole, turn out to be quite
restricted. Our analysis indicates that

Mða1Þ≃ 1.40� 0.02 GeV;

Γða1Þ≃ 0.30� 0.05 GeV:

These values of mass and width correspond to values
of the parameters s1 ∼ 2.002 GeV2 and g1 ∼ 0.732 GeV,
respectively.
The interesting parameter to vary is the ratio γ ¼ g2=g1

in order to find the range of values that produce two peaks
with appropriate characteristics: the f0π peak occurs at
higher mass than the ρπ peak, and the ratio of maximal
intensities of these peaks, i.e., ρπ=f0π, falls between
1000 and 500, as indicated by the available data. These
requirements lead to negative values of γ in the range
½−0.1;−0.055�. In other words, the constants g1 and g2
have opposite signs. We choose as our central
value γ ¼ g2=g1 ¼ −0.08.

FIG. 2. The ρπ differential cross section as a function of the
mass M, in three cases: background Deck, unitarized Deck as in
Eq. (11), and the final result including direct production.
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The next step is to determine the amount of direct
production necessary to fix the two peaks, one in ρπ, the
other in f0π, at their desired positions, i.e.,M ¼ 1.26 GeV
for ρπ and M ¼ 1.42 GeV for f0π. Values such as
Gσπpf1 ¼ 120 and Gσπpf2 ¼ 5.5 in Eq. (12) ensure good
positions for the two peaks, and this situation is stable when
one varies the parameter γ. The ratio of direct production to
the background Deck amplitude is consistent with the value
we obtained previously [5] in our analysis of data at much
lower energies, with smaller statistics.
It is interesting to see how the two peaks are built up. We

plot in Fig. 2 the shapes of the ρπ intensity as a function of
the energy M, for the various terms in the calculation. The
pure Deck background does not produce a resonant shape.
The unitarized amplitude shows effectively the ∼ cos δ zero
that appears in the one-channel case [5] (to which this
problem is actually very close). Finally, direct production
produces the observed peak, at the right position. A similar
set of curves for the f0π intensity is shown in Fig. 3. Notice
that the form of the Deck background by itself appears to
simulate a narrow resonance peak at threshold (of course,
without any accompanying phase).
The separation of the positions of the two peaks is

evident. The width of a1ð1260Þ is about twice the width of
a1ð1420Þ in the calculation. The a1ð1420Þ peak is also
more symmetrical, with a width of about 0.14 GeV. The
lower end of the f0π intensity exhibits a (tiny) peak at
around 1.2 GeV owing to the zero emphasized in Eq. (5).
We display in Fig. 4 a set of phase differences between

the f0π and ρπ amplitudes for three values of our parameter
γ. We adopt γ ¼ −0.08 as our central value (subject to more
refined analyses). We call attention to the rapid rise of
over 100° in the phase difference in the mass region
1.2–1.3 GeV. A quantitative fit to the data would yield a
precise value of γ and of the branching ratio of the a1 into
f0π of the order of 10−3 relative to the dominant decay
mode a1 → ρπ.

Summary.—We find that the main features of the
COMPASS data, two mass peaks separated by ∼160 MeV
with significant relative phase motion, are fully compatible
with a single a1 resonance. A detailed quantitative fit of
the data with this formalism would lead to a new determi-
nation of the mass and width of the a1 and of its branching
fraction into f0π.
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FIG. 3. The f0π differential cross section as a function of the
mass M, in three cases: background Deck, unitarized Deck as in
Eq. (11), and the final result including direct production.
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1.2–1.6 GeV region. The middle curve corresponds to our
“central” solution γ ¼ −0.08 and the two others (marked) to
other values in the range of interest. In all three cases, the other
results of the calculation remain practically unchanged: peak
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