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We study, numerically, the collective dynamics of self-rotating nonaligning particles by considering a
monolayer of spheres driven by constant clockwise or counterclockwise torques. We show that hydro-
dynamic interactions alter the emergence of large-scale dynamical patterns compared to those observed in
dry systems. In dilute suspensions, the flow stirred by the rotors induces clustering of opposite-spin rotors,
while at higher densities same-spin rotors phase separate. Above a critical rotor density, dynamic hexagonal
crystals form. Our findings underscore the importance of inclusion of the many-body, long-range
hydrodynamic interactions in predicting the phase behavior of active particles.
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Systems of motile and interacting units can exhibit
nonequilibrium phenomena such as self-organization and
directed motion at large scales [1]. Theoretical studies of
active matter report clustering [2], phase separations [3–5],
and rotating structures [6]. Some of these phenomena have
been observed in experiments of bacterial suspensions [7]
or chemically activated motile colloids [8].
The collective motion of translating units such as

bacteria has received much interest [1]. On the other hand,
little is known about spinning units, partly because such
systems were realized experimentally only recently. Active
rotation of particles can be achieved using external forcing
such as rotating magnetic fields [9,10], uniform electric
fields (the Quincke rotation effect) [11], or chemical
reactions [12]. Self-assembly from polymers by motile
bacteria can create microrotors [13]. In biological systems,
the dancing volvox [14], uniflagellar algae C. reinhardtii
[15], and bacteria T. majus [16] exhibit rotorlike behaviors.
Rising interest in rotor systems generated theoretical
studies exploring rotor pair dynamics [17,18], nonequili-
brium structure formation [19], dynamics at interfaces
[20,21], rheology of suspensions [22,23], and phase sep-
aration driven by active rotation [24,25].
Models of the collective behavior of active matter often

neglect particle motion due to the flow stirred by the other
particles [4,5,24,26], tacitly assuming that the observed
phase behavior of the “dry” system would persist in a
system with fluid motion. However, in the viscosity-
dominated world of colloidal-size particles, hydrodynamic
interaction generates a long-range correlation, which can
play an important role in the self-organization in many-
body systems [27–29]. For example, in the studies of
microswimmers, it was found that the hydrodynamic
interactions determine the collective motion of squirmers
(self-propelled spheres with no aligning interaction) [30]
and the recently observed self-organization of bacteria into

a macroscale bidirectional vortex when confined inside a
drop [31] can only be explained by accounting for the fluid-
mediated interactions [32]. It is the hydrodynamic inter-
actions that cause two point rotors spinning in the opposite
direction to translate [18] or undergo complex motions
[33], instead of remaining fixed in space [24]. While the
importance of hydrodynamic interactions in micro-
swimmers (linearly propelled units) has been appreciated,
large and dense populations of rotors have not been studied
and the robustness of observed phase behavior in the dry
spinner system [24] remains an open question.
In this Letter, we show that the hydrodynamic inter-

actions between self-rotating nonaligning spherical par-
ticles have profound effects on self-organization. We
consider monolayer suspensions of spherical rotors with
clock- and counterclockwise spins suspended in liquid in a
3D domain [34]. At low densities, Fig. 1(a), a gaslike phase
is observed with the rotors moving randomly in the stirred
fluid. In contrast, in a dry system the spinners remain fixed
in place (the frozen state in Ref. [24]). As the particle
density further increases, a phase-separated fluid state
emerges [Figs. 1(b) and 1(c)] with large clusters of
same-spin rotors manifesting as lanes or macroscopic
vortical structures. Past a critical particle density, dynamic
crystals composed of both types of rotors emerge, Fig. 1(d).
Particle motions.—We consider microrotors whose size

is such that inertia is negligible (overdamped or Stokes
flow regime), under the assumption of strong convection
by the fluid flow. A rotor centered at xi with radius a
subjected to a torque T generates a rotlet disturbance fluid
flow uRðx;xiÞ ¼ T × ðx − xiÞa3=jx − xij3 with velocity
decaying slowly with the distance from the rotor as
∼1=r2. The flow stirred by each rotor drags other rotors
into motion. This is the essence of hydrodynamic
interactions—a particle translates and rotates in response
to the fluid flow generated by the motion of another
particle. The rotors’ positions and rotations evolve as [34]
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interactions between the particles. Ω0 ¼ jTj=8πμa3 is the
rotation rate of an isolated rotor. Noise is neglected in
Eq. (1), under the assumption of strong convection by the
fluid flow a2Ω0=Dp ≫ 1 (Dp is the particle diffusivity); for
colloidal rotors of radius 1 μm suspended in water this
condition is met if Ω0 > 0.01 s−1, which is well below
experimentally observed values [12].
In dilute suspensions, where rotors are widely separated,

the collectively generated fluid flows are well described by
a superposition of the rotlet flows. However, in dense
suspensions the full hydrodynamic interactions and the
inclusion of closer-range lubrication flows become com-
plicated to resolve analytically and require the use of
sophisticated numerical methods.
The full hydrodynamic interactions between the rotors

are computed using the force-coupling method. The long-
range multibody interactions are fully resolved by solving
the Stokes equations with regularized low-order multipoles,
while the short-range lubrication interactions are included
from analytical solutions [39]. The force-coupling method
has been successfully applied to study suspension flows
[40,41]. For a description of the numerical method see the
Supplemental Material [34] and references therein.
The numerical simulations of the monolayer suspensions

are performed in a computational domain of Hx ×Hy×
Hz ¼ 80a × 20a × 80a, in which a is the particle radius
and y denotes the direction in which torques are applied.
Periodic boundary conditions are used in the x and z
directions. The particle monolayer is located at y ¼ 0 and
the computational box is bounded by rigid walls located at

y ¼ �Hy=2. The vertical separation is chosen big enough
to guarantee that the wall boundary does not affect the
monolayer dynamics. Note that the rotors remain in the
monolayer because the flow generated by their self-rotation
does not induce particle translation in a direction normal to
the monolayer [42].
We consider a 50:50 mixture of opposite-spin rotors with

a total volume fraction varying from ϕ ¼ 0.1 to 0.56. For
the monolayer suspension, the volume fraction is defined as
ϕ ¼ ð4

3
πa3ÞNp=ðHx ×Hz × 2aÞ, in which Np is the num-

ber of the rotors. The number of suspended rotors varies
from Np ¼ 306 at ϕ ¼ 0.1 to Np ¼ 1, 712 at ϕ ¼ 0.56. To
model the active rotation, external torques are applied to the
rotors in the y direction. The magnitude of the external
torque is normalized by the fluid viscosity μ0 and the
reference angular velocityΩ0, T� ¼ T=8πμΩ0a3 ¼ �1. All
of the simulations start from initial random configurations,
generated by a molecular dynamics procedure. The dynam-
ics are studied after the suspensions reach stationary states,
typically about t≃Oð104Þ from the initial random state
(time is nondimensionalized by Ω0).
Hydrodynamic interactions and translation of rotors.—

Since dynamics here is overdamped and not noisy, the
system behavior is controlled by only one parameter, the
rotor density ϕ. To assess the effect of the hydrodynamic
interactions, we examine the conversion to translational
kinetic energy (Etke) of the rotational kinetic energy (Erke)
supplied to the suspension by the applied torque as rotor
density increases. In the absence of hydrodynamic inter-
actions, the rotors will remain fixed in space until random
close packing is reached (ϕrep ∼ 0.56) [43]. The flow
generated by the rotating spheres moves them around
and hinders their spinning [34]. Accordingly, the transla-
tional kinetic energy is expected to increase with particle
density. However, Fig. 1 shows that the energy balance
at steady state κ ¼ Etke=Etot, where Etot ¼ Erke þ Etke,
depends nonmonotonically on the rotor density.
Initially, as the particle separation decreases with ϕ, the

hydrodynamic interactions become stronger thereby
increasing κ. In contrast to the dry 2D gear-rotor system
in which κ remains smaller than 2=3 [24], the equilibrium
value set by equipartition, κ here becomes larger than 2=3
for ϕ ¼ 0.40 and 0.50 as the suspensions phase separate. In
the phase-separated fluid regime, the suspensions develop
large-scale collective motions, which contribute to the
increase of Etke. As the system approaches random close
packing, κ peaks at ϕ≃ 0.50 and decreases sharply after-
wards, indicating a possible phase transition and change in
the suspension microstructure. The κ peak occurs prior to
random close packing due to lubrication effects: the strong
hydrodynamic resistance generated by the flow in the thin
gap between particles effectively locks the rotors together
leading to coherent motion.
The changes in suspension structure are also suggested

by the behavior of the mean-squared rotors’ displace-
ment MSD ¼ hjxiðtÞ − xið0Þj2i=a2, shown in Fig. 2(a).

FIG. 1 (color online). The ratio of the translational kinetic
energy to the total kinetic energy κ ¼ Etke=Etot as a function of
rotor density ϕ. The insets are snapshots of simulations (50–50
mixture of clockwise(blue)—counterclockwise(red) spinning
rotors) with total density (a) ϕ ¼ 0.20, (b) 0.40, (c) 0.50, and
(d) 0.54. Movies are available in the Supplemental Material [34].
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Hydrodynamic interactions give rise to random rotor
motion, which in the short-time limit exhibits the typical
ballistic ∼t2 behavior. However, at intermediate times
100 < t < 1000, the MSD changes from diffusion ∼t at
ϕ ¼ 0.2 to superdiffusion at ϕ ¼ 0.4 and 0.5. At short time
scale, the MSDs for ϕ ¼ 0.4 and 0.5 are almost the same, as
both systems are in the phase-separated fluid states. In the
long-time limit, however, the MSD depends on the large-
scale collective motion. For t > 50, the MSD for ϕ ¼ 0.4
grows at a much faster rate than ϕ ¼ 0.5. The super-
diffusivity is due to Lévy flights of the rotors [44] seen in
Figs. 2(b) and 2(c). The trajectories show that at ϕ ¼ 0.4
individual rotors move longer distances and circulate less in
the macroscopic vortices compared to ϕ ¼ 0.5. At
ϕ ¼ 0.56, the MSD is dramatically reduced due to crystal
formation. Unlike to the dry gearlike rotor system [24],
caging is not obvious in the MSD.
Spin segregation.—In the range of densities below the

sharp drop in κ (i.e., ϕ ≤ 0.5), the rotors form dynamic
assemblies [34] which in Figs. 1(b) and 1(c) are indicated
as “phase-separated fluid.” To quantify this tendency to
cooperative motion we compute the number densities of the
opposite-spin and same-spin rotors within distance r

λ�ðrÞ ¼
�
1

N

XN
i¼1

�P
N
j¼1;j≠i Hðr − jdijjÞδðTi � TjÞ

nπr2ð2aÞ
�	

:

HðxÞ is the Heaviside function, δðxÞ is the Dirac measure,
N is the number of the suspended rotors, jdijj is the distance
between the ith and jth rotors, and n is the number density.
λ� are related to the pair distribution functions, gAAðrÞ and
gABðrÞ as λ−ðrÞ ∼

R ðgAAÞrdr and λþðrÞ ∼ R ðgABÞrdr; it can
be interpreted as the average number of coherently moving
neighbors [45].
Figure 3(a) illustrates λ� for ϕ ¼ 0.5. λ−ðrÞ exceeds

λþðrÞ at small separations r implying clustering of the
same-spin rotors. In the far field (r > 30a), eventually
the number densities of the same- and opposite-spin
rotors become the same. The average cluster size can be

characterized by the length scale over which the
correlations between the rotors die out, LðtÞ ¼R
rðλ− − λþÞdr= R ðλ− − λþÞdr. Figure 3(a) shows that L

grows as ∼t1=3, which eventually saturates to the value
shown in the inset of Fig. 3(b) (17.4 in this case). The
exponent of 1=3 is surprising as it is usually associated with
coarsening dynamics in the absence of hydrodynamics.
Hydrodynamic interactions are, however, known to give
rise to diffusive behavior in suspension flows [46–48].
A more careful examination of the clustering shows that,

in dilute suspensions (ϕ ≤ 0.2), rotors of opposite-spin tend
to pair-up. Figure 3(b) shows that the difference between λ−

and λþ reverses sign, indicating clustering of same-spin
rotors, as the density increases above ϕ ∼ 0.2. The change
of microstructure occurs because while at low densities the
separation between rotors is large thereby allowing rotors to
explore more space by translation (a pair of opposite spin
rotors translates [34]), at higher densities assemblies that
are less obstructing to the motion of other rotors are
preferred (a pair of same spin rotors orbits around each
other [34]). At ϕ ¼ 0.4 and 0.5, where complete separation

FIG. 2 (color online). (a) MSDs for ϕ ¼ 0.2 (times), 0.4
(diamond), 0.5 (closed circle), 0.56 (open circle). Representative
trajectories for (b) ϕ ¼ 0.40, (c) 0.50. The red and black lines
refer to trajectories of different rotors.

FIG. 3 (color online). (a) Normalized partial number density of
same-spin (λ−; ∘) and opposite-spin (λþ;×) rotors for ϕ ¼ 0.5 at
steady state. Insets illustrate co- and counterrotating particles and
their joint rotation or translation. The inset shows a ∼t1=3 growth
of the length scale from the initial random configuration.
(b) Average density difference between coherently moving
same-spin and opposite-spin rotors, λ− − λþ, for ϕ ¼ 0.1
(square), 0.2 (circle), 0.3 (triangle), 0.4 (plus), 0.5 (times),
0.54 (diamond), and 0.56 (inverted triangle). The inset shows
the final integrated length scale L as a function of ϕ.
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occurs, λ− − λþ are almost identical for r > 5a. As ϕ
increases further, ϕ ≥ 0.54, λ− − λþ becomes close to zero,
suggesting there is no or very weak preferential aggregation
of the rotors. In the inset, L is shown as a function of ϕ.
Spin segregation is captured by the integrated length scale
which increases sharply at ϕ ¼ 0.2 and drops rapidly
for ϕ ≥ 0.54.
Crystals.—At high density, rotors form crystals of

hexagonal symmetry, see Fig. 4(a). The crystals are
composed of rotors of either spin, and no spin segregation
is observed for the duration of the simulations. The fraction
of the crystal phase increases with density, and at ϕ ¼ 0.56
the crystal structure occupies roughly half of the computa-
tional domain. The formation of the crystals is tracked by
an order parameter, 0 ≤ ζ6 ≤ 1, which measures the aver-
age sixfold bond orientational order of the rotors;

ζ6 ¼
�
1

N

XN
i

�
1

Nb

XNb

j

e6θiji
�	

:

θij is the azimuthal angle of dij and Nb is the number of the
neighboring rotors (jdijj < 2.05a). ζ6 is zero for an
isotropic system and one for a perfect hexagonal crystal.
Figure 4(b) shows that ζ6 is almost zero up to ϕ ¼ 0.5 and
increases rapidly from ϕ≃ 0.54, which corresponds with
where the sudden drop of κ occurs (see Fig. 1).

Interestingly, even in the presence of crystals the rotors
exhibit superdiffusive behavior with an exponent ∼t1.2 at
the intermediate time scale, see Fig. 2(a). Figure 4(c)
illustrates trajectories of 170 randomly selected rotors.
Particle mobility is much lower in the crystal region than
in the fluid region: even though the trajectories are shown
for a relatively long period t ¼ 0 ∼ 600, rotors located in a
crystal move only very short distance, usually less than a
particle diameter, while rotors in the fluid region travel
considerably longer distance (> 15a). The difference in
mobilities is also evident from Fig. 4(d), which compares
the MSDs for the rotors initially in a crystal and in a fluid
region. The MSD for the rotors in a crystal grows very
rapidly ∼t2.3 for t > 400. The rapid growth of the MSD
seems related to structural rearrangements, i.e., large-scale
motions of crystal and escape of the rotors in the crystal to
the fluid region. Note that the crystal structure dynamically
melts, reassembles, and moves, see movies in Ref. [34].
Conclusions and outlook.—Suspensions of active par-

ticles exhibit complex phase behavior [1] and self-
translating particles have attracted extensive studies
[3,4,30,45]. Here we show that self-rotating particles are
driven by hydrodynamic interactions into mobile clusters
and crystals even in the absence of self-propulsion or
ambient flows. The resulting collective dynamics is very
different from that observed in a dry system [24].
The effect of the hydrodynamic interactions is assessed

by observing the conversion rate of the rotational to the
translational kinetic energies (κ). κ initially increases with
the rotor density, and eventually exhibits a sudden drop at
ϕ≃ 0.54. For ϕ ≥ 0.54, the active rotors start to form
crystal structures, which are responsible for the sudden
drop of κ. In contrast, the dry, no-noise system of gearlike
rotors [24] exhibits κ ¼ 0 (in the frozen state) followed by
monotonic increase of κ above a critical density ϕc
corresponding to about 0.5 in our notation. We found that
the opposite-spin rotors tend to stay close at low ϕ, whereas
for ϕ > 0.2 separation into fluid phases of same-spin rotors
occurs. All of these suggest that multibody hydrodynamic
interactions play a significant role in the collective dynam-
ics and phase behavior of suspensions of active rotors and
these effects should not be neglected in studies of similar
active systems. For example, hydrodynamic interactions
could influence or drive the formation of the peculiar
dynamical structures experimentally observed at the inter-
face of drops covered with colloidal particles [49,50].
In this Letter we considered only torques that are

perpendicular to the particle monolayer. Because of the
symmetry of the generated flows, the particles remain
confined to the monolayer and do not move transversely. In
experimental systems, for example Quincke rotors [51,52],
it is not the case that torques stay in one direction or even
constant, as the particle rotation is dependent on the full
electrohydrodynamics. Although restricting the rotational
motion to one direction in experiments is challenging, it is
not impossible and our study suggests potentially intriguing

FIG. 4 (color online). (a) Crystal structures formed in a
suspension at ϕ ¼ 0.56. The black and red circles denote the
rotors rotating clockwise and counterclockwise, respectively.
Note that for clarity only the rotors in crystals are shown.
(b) Hexagonal bond-orientational order parameter ζ6 as a
function of ϕ. (c) Sample trajectories for t ¼ 0 ∼ 600 for
ϕ ¼ 0.56. (d) MSDs of the rotors initially in crystal (closed
circle) and in fluid regions (times).
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experiments. Another problem that remains relatively
unexplored is that of using spinners and rotors for transport
and mixture of passive particles [24]. Finally, this work
with rotor monopoles serves as a solid basis to treat rotor
dipoles, which are commonly encountered in biology, e.g.,
swimming bacteria with rotating flagella or a cytoskeletal
torque dipole consisting of two actin filaments and myosin
motors [53].
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