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We investigate the unique mechanical properties of reentrant 3D origami structures based on the Tachi-
Miura polyhedron (TMP). We explore the potential usage as mechanical metamaterials that exhibit tunable
negative Poisson’s ratio and structural bistability simultaneously. We show analytically and experimentally
that the Poisson’s ratio changes from positive to negative and vice versa during its folding motion. In
addition, we verify the bistable mechanism of the reentrant 3D TMP under rigid origami configurations
without relying on the buckling motions of planar origami surfaces. This study forms a foundation in
designing and constructing TMP-based metamaterials in the form of bellowslike structures for engineering
applications.
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Origami is defined as the handcrafted art of paper
folding. In recent decades, origami has attracted significant
interest by mathematicians and engineers, not only because
it stimulates intellectual curiosity, but also because it has
large potential for engineering applications. One good
example is the usage of origami patterns for the enhance-
ment of structural bending rigidity for thin-walled cylin-
drical structures [1]. By leveraging their compactness,
origami structures are also employed for space applica-
tions, such as space solar sails [2,3] and deployable solar
arrays [4]. It is not surprising that biological systems
exhibit origami patterns, e.g., tree leaves [5].
Mechanical metamaterials are another topic of active

research in the scientific community nowadays. As a
counterpart of electromagnetic metamaterials, mechanical
ones are constructed in an ordered pattern of unit-cell
elements to achieve unusual mechanical properties [6,7].
Among them are negative Poisson’s ratio and controllable
instability of structures. For example, negative Poisson’s
ratio has been exploited to manipulate wave propagation
in reentrant cellular structures [8]. Previous studies
also reported that structural instability can be used to
achieve tailored damping characteristics in mechanical
metamaterials [9,10].
In this study, we adopt origami structures as a building

block of mechanical metamaterials to achieve simulta-
neous negative Poisson’s effect and structural bistability.
Specifically, we employ the Tachi-Miura polyhedron
(TMP), which is a bellowslike 3D origami structure based
on Miura-ori cells [11,12] (Fig. 1). Lateral assembly of
Miura-ori cells in the form of 2D Miura-ori sheets has been
previously explored for the construction of metamaterials
[13]. However, there have been limited efforts to study the
cylindrical derivative of Miura-ori cells in the form of TMP
[14]. In contrast to 2D origami structures such as Miura-ori
sheets and the waterbomb [15], the TMP holds a volume

that changes continuously from zero to a certain value, and
then returns to zero again at the ends of the folding motion
[see Fig. 1(a)]. This implies that we can obtain a very large
stroke from its folding motion, which is useful in designing
actuators and impact absorbers. Also, compared to other
origami-based cylindrical structures [16–21], the TMP has
a unique feature of rigid foldability. That is, the deforma-
tion takes place only along crease lines instead of relying
on the elasticity of materials. Therefore, the structure can

FIG. 1. (a) Folding motion of the Tachi-Miura polyhedron.
(b) Folded TMP cell. (c) Top view of the TMP. (d) Flat front and
rear sheets of TMP with the crease pattern consisting of mountain
and valley folds. (e) Folded configuration of the front sheet
corresponding to the shaded areas in (c) and (d).
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consist of only rigid panels and hinges without incurring
bending of planar origami surfaces.
In this Letter, we first examine the kinematics of the

TMP to show the tunable characteristics of its Poisson’s
ratio. We verify analytically and experimentally the auxetic
effect of volumetric 3D TMP prototypes in bilateral
directions, which is an improvement over the conventional
2D origami structures with a single-directional negative
Poisson’s effect [13,22,23]. Second, we investigate the
force-displacement relationship of the TMP structure to
show that it exhibits a bistable nature under the reentrant
configurations. While previous studies investigated
structural stability in other types of origami structures
[15,24–26], bistable—yet foldable—3D origami structures
without introducing defects have not been reported yet.
Last, a cellular structure consisting of the TMP cells is
explored to form origami-based metamaterials with a view
toward potential engineering applications.
We begin with characterizing the geometry of the TMP.

Figures 1(b) and 1(c) show the folded TMP cell in slanted
and top views, respectively. This unit cell consists of two
flat sheets, whose geometry can be characterized by length
parameters (l; m; d) and an inner angle of parallelogram (α)
[Fig. 1(d)]. The point Q is defined by the two crossing
edges of the front and rear surfaces as shown in Fig. 1(c),
which passes through the quarter line of the sheets [dashed-
dotted line in Fig. 1(d)]. Accordingly, the half breadth
(B=2) of the TMP cell corresponds to the distance between
points O and Q along the y axis, and the half-width (W=2)
is the distance between points O and R along the x axis
[Figs. 1(c)]. The half height (H=2) of the TMP cell is
also illustrated in Fig. 1(b). Note that the TMP cell exhibits
a reentrant shape when the given geometrical angle α is
above 45° [e.g., see the insets of Fig. 2(a)].
To calculate W, B, and H under various folding

configurations, we consider a quarter model of the TMP
[Fig. 1(e)], which corresponds to the dark colored area in
Figs. 1(b)–1(d). Here, the folding angles θM and θS are
functions of α (determined by the given geometry) and θG
(varies by the degree of folding). The mathematical
expressions for these folding angles are described in the
Supplemental Material [27]. It should be noted that while
θM ∈ ½0; 90°� and θS ∈ ½0; 90°�, the range of α is limited
to satisfy 2l − d cot αþ 2m cos 2α > 0. This is to avoid
the collision between points P and P0 during folding.
Accordingly, θG ∈ ½0; 2α�. Based on the geometry
described in Fig. 1, W, B, and H are obtained as follows:

B ¼ 2m sin θG þ d cos θM;

W ¼ 2lþ d
tan α

þ 2m cos θG;

H ¼ 2d sin θM:

ð1Þ

We investigate the Poisson’s ratios of the TMP by
defining them as

νHB ¼ −
ðdB=BÞ
ðdH=HÞ and νHW ¼ −

ðdW=WÞ
ðdH=HÞ : ð2Þ

Differentiating Eq. (1) with respect to the folding angles
and plugging them into Eq. (2), we obtain the Poisson’s
ratios as follows:

νHB ¼ 4m tan α cos θGcos2ðθG=2Þ þ d
2m sin θG þ d cos θM

sin θM tan θM;

νHW ¼ −
4m tan α sin θGcos2ðθG=2Þ
2lþ ðd= tan αÞ þ 2m cos θG

sin θM tan θM:

ð3Þ

To verify this analytical expression, we fabricate three
prototypes of the TMP (α ¼ 30°, 45°, and 75°) by using
paper (see the Supplemental Material [27] for details). The
number of Miura-ori layers used in each configuration is
N ¼ 7, and the characteristic lengths of the prototypes are
identical (l ¼ m ¼ 50 and d ¼ 30 mm). We conduct three
measurements of B and W at each H, as we gradually
change the folding angle. We compare the measured
Poisson’s ratios with the analytical results from Eq. (3).
Figure 2 shows the Poisson’s ratios as a function of a

folding ratio defined as ð90° − θMÞ=90°. The Poisson’s
ratio νHW in the cases of α ¼ 45°, 30°, and 70° are plotted in
Fig. 2(a), while the insets show the folded configurations
under α ¼ 70°. We find νHW is always negative regardless
of the folding ratio and α. On the other hand, the Poisson’s
ratio νHB related to width B is positive in the initial folding
stage, and it approaches zero. It is notable that in the
reentrant case (e.g., α ¼ 70°) νHB becomes negative as
shown in Fig. 2(b). As seen in the inset, we evidently
observe that B increases and then decreases as the folding
ratio of the reentrant TMP increases. We find excellent
agreement between the experimental and analytical results.
The areal change of the TMP is also measured and
compared with the analytical predictions in the
Supplemental Material [27].
The analytical contour plot of νHB as a function of

continuous α and the folding ratio is shown in Fig. 2(c).
If α is above approximately 55°, νHB becomes negative
during the folding motion. Figure 2(d) also shows the
contour plot of νHB but d ¼ 60 mm. By choosing a certain
α angle [e.g., α ¼ 70° as shown in the inset of Fig. 2(d)],
we observe νHB changes from positive to negative in the
initial folding stage, and then it becomes positive again
around 62%. The sign of νHB changes multiple times in
one folding motion. This is a unique feature of the TMP
compared to the conventional 2D Miura-ori cells, in
which negative Poisson’s effect has been reported, but
multiple sign flips of the Poisson’s ratio have not been
discovered [13,22,23]. Solving dB ¼ 0, we obtain the
analytical expression for the transition between positive
and negative νHB:
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cos2θM¼2m tanα−d�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m tanαðm tanα−2dÞp

dtan2α
: ð4Þ

This boundary is plotted in a dashed curve in Figs. 2(c)
and 2(d).
Now we investigate the force and folding ratio relation-

ship to validate the bistable nature of the TMP. We model
the TMP by rigid plates connected by torsional spring
along the crease lines (see the Supplemental Material [27]
for details). We consider the folding behavior of the TMP
under a uniaxial force (F) in the z direction. By applying
virtual displacement (δu) to the TMP and using the
principle of virtual work, we obtain the following equation:

Fδu ¼ 2nMMMδθM þ 2nSMSδθS; ð5Þ

where nM ¼ 8ðN − 1Þ and nS ¼ 8N are the number
of horizontal and inclined crease lines related to θM
and θS respectively, and MM (MS) is the bending moment
along the horizontal (inclined) crease lines. Let the
torsional spring constant be kθ, assuming that the
torsion spring is linear and identical throughout all crease
lines. Mathematically, this can be expressed as M ¼
2kθðθ − θð0ÞÞ, where θð0Þ is the initial folding angle
(i.e., natural angle with no potential energy). Based on
the geometry of the TMP and Eq. (5), the compressive

force can be expressed as (see the Supplemental Material
[27] for details)

F
ðkθ=dÞ

¼ −
32

cos θM

�

N − 1

N
ðθM − θð0ÞM Þ

þ ðθS − θð0ÞS Þ cos
3 θG

2
sin θM

cos α sin θS

�

: ð6Þ

Note that we use a normalized force to remove the
effect of the spring coefficient and the dimension of
the TMP.
Figure 3 shows the force-folding ratio relationship of the

TMP under different initial conditions. When the natural

folding angle θð0ÞM is 45° and the number of layers N is 7,
the normalized force increases monotonically regardless
of the α values as shown in Fig. 3(a). However, in the case

of θð0ÞM ¼ 80° (i.e., a more upward initial posture than

θð0ÞM ¼ 45°), we observe the TMP with α ¼ 70° exhibits a
local minimum point in the force-folding relationship [see
the solid curve in Fig. 3(b)]. This indicates that the reentrant

structure under θð0ÞM ¼ 80° and α ¼ 70° has two stable
configurations: one is the initial state (the folding ratio of
11%) and the other is a state in the middle of the folding
motion (folding ratio of about 67%). At certain geometrical
and folding configurations, the 3D TMP structure can

FIG. 2 (color online). Poisson’s ratio change of TMP. (a) νHW and (b) νHB as a function of the folding ratio. Insets show folded
configurations of reentrant TMP under α ¼ 70° and l ¼ m ¼ 50, d ¼ 30 mm. Error bars indicate standard deviations. Contour plot of
νHB as a function of α and the folding ratio if (c) d ¼ 30 mm and (d) d ¼ 60 mm. The white dashed line indicates the boundary between
positive and negative νHB.
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exhibit two or even three different equilibrium states under
the same normalized force (see the Supplemental Material
[27]). We also note that this can incur interesting phenom-
ena, such as negative stiffness, snap through, and hysteresis
effects, which can be exploited for the purpose of energy
absorption and impact mitigation.
We now investigate numerically the local minimum

points under various combinations of α and θð0ÞM values
[Fig. 3(c)]. We observe that the bistability arises when the
TMP exhibits reentrant shapes and appropriate initial

folding angles are applied (minimal θð0ÞM is 73° given the

geometry), implying that by changing θð0ÞM , one can
manipulate the stability of the TMP. It should be noted
that the bistability in this TMP structure is achieved solely
by its kinematics, without relying on material properties or
deformation of the facets. While previous studies discov-
ered simultaneous foldability and bistability in the setting
of 2D origami cells [26], a 3D version of such architectures
has been unexplored. Thus, the TMP can serve as a
prototypical 3D origami structure, which exhibits

foldability and bistability at the same time. The bistable
characteristic can provide self-locking mechanisms, so that
the structure can cease its folding motion and maintain a
certain folded configuration stably.
Finally, we explore the design of a cellular structure

consisting of multiple TMP cells (Fig. 4). Similar to its unit
cell, this TMP cellular structure transforms from a 2D state
to another 2D configuration, while filling 3D space in the
transition stage. Therefore, by taking advantage of the
unique kinematics of the TMP unit cell discussed above,
we can design a new type of 3D structure which exhibits a
tunable Poisson’s ratio and structural bistability. Figure 4(a)
shows the TMP cellular structure with α ¼ 30°, where we
observe the structure stretches in the y direction, while
being contracted in the x direction monotonically (i.e.,
positive νHB and negative νHW). If α ¼ 70°, it expands in
the y direction, at first behaving similar to the previous
case, but past a certain threshold it starts to shrink in all
directions due to the negative Poisson’s ratios in bilateral
directions [Fig. 4(b)]. These TMP cellular structures are
also a 1 degree-of-freedom system. Therefore all TMP cells
fold and unfold simultaneously by manipulating one
parameter, folding angle θM in this study.
In conclusion, we investigated unique kinematics of

origami-based 3D structures using the Tachi-Miura poly-
hedron. We found that the Poisson’s ratio of the reentrant
TMP can be tuned to exhibit negative values in bilateral
directions under the strains along the stacking direction.
Also, the reentrant TMP can exhibit bistable characteristics
in contrast to normal TMP configurations. The findings in
this study can form a foundation in designing and con-
structing a new type of mechanical metamaterials, which
feature controllable auxeticity and structural stability.
These 3D cellular structures offer an enhanced degree of
freedom in structural responses, showing great potential for
various engineering applications such as space structures
and impact absorbers.

We thank Dr. Richard Wiebe for his helpful input. We
acknowledge the support of NSF (CMMI-1414748) and
ONR (N000141410388).

(a) (b) (c)

FIG. 3. Force-folding ratio relationship. The number of layers N is 7, and the initial folding angle is (a) θð0ÞM ¼ 45° and (b) θð0ÞM ¼ 80°.
Illustrations indicate the folded shape of the TMP with α ¼ 70°. (c) Folding ratio at the local minimum point under different initial
angles θð0ÞM .

FIG. 4 (color online). Folding motions of TMP cellular struc-
tures. The numbers show folding ratios, and l ¼ m ¼ 50 mm,
d ¼ 30 mm. (a) α ¼ 30°. (b) α ¼ 70°.
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