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It is shown that the sixth-order 6σ ¼ 720° (or 6∶2) resonance is manifested for high-intensity beams of
linear accelerators through the space charge potential when the depressed phase advance per cell σ is close
to and below 120° but no resonance effect is observed for σ above 120°. Simulation studies show a clear
emittance growth by this resonance and a characteristic sixfold resonance structure in phase space. To
verify that this is a resonance, a frequency analysis was conducted and a study was performed of crossing
the resonance from above and from below the resonance. Canonical perturbation is carried out to show that
this resonance arises through perturbation of strong 2σ ¼ 360° (2∶1) and 4σ ¼ 360° (4∶1) space charge
resonances. Simulations also show that the space charge 6σ ¼ 360° (or 6∶1) resonance is very weak.
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Recently, many high-intensity linear accelerators (linacs)
have been designed and/or constructed like the SNS (USA)
[1], the J-PARC (Japan) [2], and the KOMAC (Korea) [3].
For high-intensity accelerators, it is the utmost goal to
minimize the beam loss of halo particles by avoiding or
minimizing contributions of various halo mechanisms.
Besides mismatch [4], studies show that many nonlinear
phenomena can be manifested even for a linear accelerator
through the nonlinear potential of the self-field. Since the
finding that the 2νx − 2νy ¼ 0 space charge (sc) coupling
resonance induces halo in the ring [5], further studies of
halo formation and/or emittance growth by space charge
and resonances were reported in Ref. [6] and space charge
coupling resonance studies of a linear accelerator such as
Ref. [7]. Here, νxðyÞ is the horizontal (vertical) tune of a
circular accelerator. A fast halo formation mechanism by a
nonround beam was found for the SNS linac [8] and
experimentally verified [9]. Recently, it was discovered
that the 4σ ¼ 360° (or 4∶1) resonance is manifested for
high-intensity beams of linear accelerators [10] and this
resonance was experimentally verified [11].
In this Letter, we report that the sixth-order 6σ ¼ 720°

(6∶2) resonance is excited through perturbation of 2∶1 and
4∶1 resonances for high-intensity beams of linear accel-
erators through the space charge potential. A resonance can
be expressed as m · σ ¼ n · 360°, where m represents the
order of the resonance and n represents the nth harmonic
component of the potential. We are reporting an m ¼ 6,
n ¼ 2 resonance that generates a sixfold resonance struc-
ture, meaning that the resonance is a sixth-order resonance
driven by the second harmonic component. This resonance
should not be confused with the 3σ ¼ 360° resonance that
generates a threefold resonance structure. Even-order
resonances dominate because the geometry of accelerators
generally has xðyÞmidplane symmetry and generated beam
distributions are symmetric and have very small skew

potential components such as ∼x3 (or y3) that drives 3σ ¼
360° (or 3∶1) resonance. Even though this resonance is
weak compared with the fourth order 4σ ¼ 360° space
charge resonance, it is worthwhile to report this sixth-order
resonance of high-intensity linear accelerators.
Numerical simulation of a linac is performed with a well-

matched beam with 50 000 to 100 000 macroparticles using
the PARMILA code [12]. The transverse focusing of the linac
lattice is provided by an FFDD or FD [F(D): focusing
(defocusing) quad] lattice. Here FFDD means an
FOFODODO lattice. A 10 emA 40Ar

þ10 beam with initial
beam energy of 5 MeV=u and initial normalized rms
emittance εx¼εy¼0.115ðmmmradÞ, εz¼0.130ðmmmradÞ
is used for the simulations. The initial beam distribution is a
Gaussian density distribution truncated at 3 standard
deviations. The phase advance depression due to space
charge effects is about −20°. The coupling between the
transverse and longitudinal planes is minimal because the
depressed longitudinal phase advance σz is about 10°,
which is well separated from the transverse depressed
phase advance.
The numerical simulations show that the 6σ ¼ 720°

resonance of high-intensity linear accelerators is mani-
fested through the space charge potential for a variety of
beams that have a nonlinear space charge potential such as
Gaussian, water bag, etc. In Fig. 1, the sum of output
transverse emittances is plotted vs the depressed phase
advance σ of the linac lattice. Each data point is obtained by
maintaining σ constant throughout a linac. No resonance
effect is observed when σ is above 120° and the observed
emittance growth is small, which is due to the tiny initial
mismatch of the generated initial Gaussian beam.
It should be noted that maximum emittance growth takes

place at around σ ¼ 112°. For the σ ¼ 114° case in Fig. 1,
the resonance islands are rather well separated from the
main body of the beam, as shown in Fig. 2, leading to
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emittance growth and a clear sixfold structure of the 6σ ¼
720° resonance.
One characteristic of the resonance is the behavior

difference when we cross the resonance from below and
from above the resonance. This is due to the stable fixed
points of the resonance. When we cross the resonance from
above, the six stable fixed points emerge from the origin
and move away, thus scooping particles from the core (see
the plots of Fig. 3, as we cross the resonance from above).
On the other hand, when we cross the resonance from
below, stable fixed points move in from afar toward the

FIG. 2 (color online). Plot of the beam distribution in phase
space for the linac case with σ ¼ 114° in Fig. 1. Six stable islands
are rather well separated from the main body of the beam. The
depressed phase advance σ is maintained fairly constant through-
out the linac lattice.

FIG. 1 (color online). Plot of the transverse rms emittance vs
depressed phase advance per cell σ showing the emittance growth
induced by the 6σ ¼ 720° (or 6∶2) space charge resonance of
linac beams. The small emittance growth (∼5%) observed for
>120° is caused by a tiny initial mismatch of the generated initial
Gaussian beam.

FIG. 3 (color online). Plots of beam distribution evolution
as one crosses the 6σ ¼ 720° (or 6∶2) resonance from
above the resonance (from the top to the bottom plot in
sequential order). One observes that the six stable fixed
points emerge from the origin and move away, scooping
particles.
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origin. So the particles cannot be captured by the stable
fixed points, and they move around the fixed points (see
Fig. 4). Figure 3 illustrates how the beam distribution
evolves as one crosses the resonance from above the
resonance, where σ varies from 121° to 108° (downward
crossing) along the linac lattice. The plots from top to
bottom show how six stable fixed points move away from
the beam. On the other hand, when one crosses the
resonance from below the resonance (upward crossing),
stable fixed points move in from afar toward the origin and
the particles cannot be captured by the stable fixed points.
Particles, rather, move around the fixed points as shown
in Fig. 4.
Depending on the direction to cross the 6σ ¼ 720°

resonance, the emittance growth also differs for the
same reason. Figure 5 shows the plot of emittance
growth of resonance crossing vs a parameter S ¼
ðΔσ=360°Þ2=ðdσ=dn=360°Þ [13,14], where Δσ½¼2π½ξxþ
ðG2

2=δ2Þ�[ in Eq. (10)] is the tune spread (proportional to the
stopband width of the resonance [14]) and dσ=dn is the
phase advance change per cell. The parameter S is
equivalent to g2=ðΔν=ΔnÞ in Ref. [13] and is a measure
of how fast the resonance crossing is and how strong the
resonance is. Two groups of data show a distinct difference
due to the resonance characteristics. It should be noted that
the emittance growth for the upward crossing scales as S1=2,
while emittance growth scales as S for the downward
crossing. A large value of Smeans slow resonance crossing
or wide resonance stopband.
Another characteristic of the resonance is the existence

of a resonant frequency component. Due to the fixed points
of the resonance, some particles have the same frequency
as the driving frequency of the 6σ ¼ 720° resonance.
A Fourier analysis is performed on the rms beam size

along the linac lattices with σ ¼ 112° and 125°, respec-
tively. A clear 6σ ¼ 720° resonance peak is observed at the
particle tune value of 1=3 (¼120°=360°) for the linac with
σ ¼ 112°, as shown in Fig. 6. Here, particle tune is defined

FIG. 4 (color online). Plot of beam distribution as one crosses
the 6σ ¼ 720° (or 6∶2) resonance from below the resonance. One
observes that the particles are not captured by the stable fixed
points and they move around stable islands.

FIG. 5 (color online). Plot of emittance growth when one
crosses the 6σ ¼ 720° resonance from above (downward cross-
ing) and from below (upward crossing). Here S is defined as
S ¼ ðΔσ=360°Þ2=ðdσ=dn=360°Þ, where Δσ is the tune depres-
sion (proportional to the stopband width of the resonance) and
dσ=dn is the phase advance change per cell.

FIG. 6 (color online). Plot of power spectrum of the frequency
analysis on the rms beam size (second-order moment) for σ ¼
112° and 125°. The particle tune is defined as the number of
transverse oscillations that individual particles make over one
period. When particles are trapped by the sixth-order resonance
stable islands, they make 1=3 turn over one lattice cell. For the
case with σ < 120°, we see a clear 6σ ¼ 720° resonance peak at
the tune of 1=3 (120°=360°), while no resonance peak is observed
for the case with σ > 120°. It is observed that the space charge
6σ ¼ 360° resonance is very weak and we observe practically
no emittance growth associated with this resonance for a wide
range of σ.
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as the number of transverse oscillations particles make over
one cell. No resonance peak is observed at the tune of 1=3
when σ ¼ 125° just above the resonance. It is evident that
there is no resonance effect when σ > 120°.
Simulations also show that the space charge 6σ ¼ 360°

resonance is very weak and no emittance growth is

observed. This demonstrates that the 6σ ¼ 720° resonance
is not from the x6 term of the space charge potential in
Eq. (2). To understand the 6σ ¼ 2 · 360° (or 6∶2) reso-
nance, we explore the space charge Hamiltonian for a 2D
Gaussian beam, given by

Hðx; p; sÞ ¼ p2
x þ p2

y

2
þ Kx

2
x2 þ Ky

2
y2 þ Vsc; ð1Þ

Vsc ¼ −Ksc

2

�
x2

aðaþ bÞ þ
y2

bðbþ aÞ
�
þ Ksc

8a2ðaþ bÞ2
�
2þ r
3

x4 þ 2

r
x2y2 þ 1þ 2r

3r3
y4
�

− Ksc

144a3ðaþ bÞ3
�
8þ 9rþ 3r2

5
x6 þ 3ð3þ rÞ

r
x4y2 þ 3ð3rþ 1Þ

r3
x2y4 þ 8r2 þ 9rþ 3

5r5
y6
�
þ � � � ; ð2Þ

where s is the longitudinal coordinate on reference orbit,
KxðsÞ and KyðsÞ are focusing field strength, a2 ¼ βxεx and
b2 ¼ βyεy are beam size, and r ¼ b=a. Since we are
interested in the 6∶2 resonance in horizontal plane, the
1D Hamiltonian can be approximated as

H ¼ p2
x

2
þ Kx

x2

2
− V2x2 þ V4x4 − V6x6 þ � � � ; ð3Þ

where Vi are coefficients with space charge potential.
Since Kx, V2, and V4 are periodic functions of period L,

using Floquet transformation with, x ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2βxJx

p
cosΦx,

where Φx ¼ φx þ χx − νxθ with χx ¼
R
s
0ð1=βxÞds, νx ¼

σ=360°, θ ¼ 2πs=L, and Jx and Φx are canonical conjugate
variables, we obtain the Hamiltonian as follows:

H ¼ νxJx − L
2π

V2βxJx − L
2π

V2βxJx cos 2Φx

þ L
2π

V4β
2
xJ2x

3þ 4 cos 2Φx þ cos 4Φx

2
: ð4Þ

To study resonance, we carry out Fourier decomposition
to the Hamiltonian in lattice harmonics. Since both 2∶1 and
4∶1 resonances are relevant to 6∶2 resonance, we approxi-
mate the Hamiltonian as follows:

H ¼ νxJx − ξxJx þ αxx
J2x
2
þ G2Jx cosð2φx − θ þ η2Þ

þ G4J2x cosð4φx − θ þ η4Þ þ � � � ; ð5Þ

where

ξx ¼
1

2π

ZL

0

V2βxds; αxx ¼
3

2π

ZL

0

V4β
2
xds;

G2eiη2 ¼ − 1

2π

ZL

0

V2βxei½2χx−ð2νx−1Þθ�ds;

and

G4eiη4 ¼
1

4π

ZL

0

V4β
2
xei½4χx−ð4νx−1Þθ�ds:

The 6∶2 resonance of the space charge potential in Eq. (3)
is weak as apparently shown in numerical simulations. In
order to understand the strong 6∶2 resonance, we need to
carry out canonical perturbation to strong 2∶1 and 4∶1
resonances.
It is known that a resonance can be produced by two

strong resonances, e.g., 2∶1 and 4∶1 resonances can
generate a 6∶2 resonance. Using a generating function,

F2ðφx; IxÞ ¼ φxIx þ B2ðIxÞ sinð2φx − θ þ η2Þ
þ B4ðIxÞ sinð4φx − θ þ η4Þ; ð6Þ

where ðφx; JxÞ and ðψx; IxÞ are old and new conjugate
phase space coordinates, and B2 and B4 terms are chosen to
cancel out the 2∶1 and 4∶1 resonances, respectively, we
find the new Hamiltonian as

H
̬
≈ νxIx − ξxIx þ αxx

I2x
2
þ ðνx − ξx þ αxxIxÞΔJ þ

αxx
2

ΔJ2

þ ðIxG2 − B2ÞC2 þ ðI2xG4 − B4ÞC4

þ ð2IxC4G4 − C2G2ÞΔJ; ð7Þ
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where ΔJ¼Jx−Ix¼2B2C2þ4B4C4, Sn¼sinðnφx−θþηxÞ,
and Cn ¼ cosðnφx − θ þ ηxÞ.
The new Hamiltonian becomes

H
̬
¼ νxIx − ξxIx þ αxx

I2x
2
þ ð2B2G2 þ 2B2αxxÞC2

2

þ ð8B4G4Ix þ 8B2
4αxxÞC2

4

þ ðG2Ix þ δ2B2 þ 2B2αxxIxÞC2

þ ðG4I2x þ δ4B4 þ 4B4αxxIxÞC4

þ ð4B4G2 þ 4B2G4Ix þ 8B2B4αxxÞC2C4; ð8Þ

where C2 and C4 corresponds to the 2∶1 and 4∶1 resonance
driving terms, C2C4 can be combined into the 6∶2
resonance, and δn ¼ nðνx − ξxÞ − 1.
Setting B2¼−½G2Ix=ðδ2þ2αxxIxÞ�, B4¼−½G4I2x=ðδ4þ

4αxxIxÞ� to remove the 2∶1 and 4∶1 resonances in
the Hamiltonian, and identifying hC2

ni ¼ hS2ni ¼ 1=2 for
detuning, we obtain

H
̬
≈
�
νx − ξx −G2

2

δ2

�
Ix þ αxx

�
1þ 6

G2
2

δ22

�
I2x
2

þ G6∶2I2x cosð6ψx − 2θ þ η2 þ η4Þ; ð9Þ

with G6∶2 ¼ −2ðG2G4=δ2δ4Þð6νx − 6ξx − 2Þ near the 6∶2
resonance. The resonance driving term is explicitly shown
above. When the betatron tune is near 2=6, we find δ2 < 0,
δ4 > 0 and ð6νx − 6ξx − 2Þ > 0; thus G6∶2 > 0. We also
note that the resonance driving strength is proportional to I2x
instead of I3x of the normal 6∶1 or 6∶2 resonances.
The Hamiltonian near the 6∶2 resonance is given by

Eq. (9). We transform the Hamiltonian into resonance
rotating frame by the canonical transformation
F2 ¼ ðψx − 1

3
θ þ 1

6
η2 þ 1

6
η4ÞI, we find the conjugate phase

space coordinates I ¼ Ix, and ψ ¼ ðψx − 1
3
θ þ 1

6
η2 þ 1

6
η4Þ.

The new Hamiltonian is

H ¼
�
νx − 1

3
− ξx −G2

2

δ2

�
I þ αxx

�
1þ 6

G2
2

δ22

�
I2

2

þ G6∶2I2 cos 6ψ : ð10Þ

Analysis of this Hamiltonian shows clearly that the 6∶2
resonance must occur when νx − ξx − ðG2

2=δ2Þ < 1
3
(or

σ < 120°) as shown in the numerical simulations.
The most important result presented in this Letter is that

the sixth-order 6σ ¼ 720° resonance in high-intensity
linear accelerators arises through the second-order pertur-
bation to strong 2σ ¼ 360° (or 2∶1) and 4σ ¼ 360° (or 4∶1)

space charge resonances. Canonical perturbation was
performed and the final Hamiltonian is used to prove
that the resonance has to occur below the 120 degree,
not above.
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