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Lévy fluctuations have associated infinities due to diverging moments, a problem that is circumvented
by putting restrictions on the magnitude of the fluctuations, realizing a process called the truncated Lévy
flight. We show that a perfect manifestation of this exotic process occurs in coherent random lasers, and it
turns out to be the single underlying explanation for the complete statistical behavior of nonresonant
random lasers. A rigorous parameter estimation of the number of summand variables, the truncation
parameter, and the power-law exponent is carried out over a wide range of randomness, inversion, and
system size. Random laser intensity is modeled on a unique platform of exponentially tempered Lévy sums.
The computed behavior exhibits an excellent agreement with the experimentally observed fluctuation
behavior.
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Lévy fluctuations involving power-law decays
½PðxÞ ∼ x−q� are ubiquitously observed in the real world.
Anomalous diffusion in disordered systems [1], trapping
periods in the subrecoil cooling of atoms [2], foraging
habits of marine predators [3], earthquake magnitudes [4],
financial instruments [5], etc., exhibit power-law behavior
of the related variables. In the optical domain, power-law
decays have been reported in step lengths between scatter-
ing events in hot atomic vapors [6] and photon lifetimes
in engineered disordered systems [7]. To such a medley
of Lévy systems, random lasers [8–11] are a rather recent
addition. Capable of both incoherent and coherent
emission, these unique optical systems exploit disorder-
enhanced amplification [12–22]. The innate disorder real-
izes statistical fluctuations in several systemic parameters
[23–30], of which Lévy fluctuations of intensity, occurring
in both dynamic [31–34] and static [35] disorder, have
garnered particular interest. Lévy distributions have diverg-
ing moments, which generate the discussion on the paradox
of “infinite variance in a real system” [36]. To resolve this
paradox, two models have been proposed, namely, Lévy
walks [37] and truncated Lévy flights [36]. The former
involves spatiotemporal coupling, which penalizes extra-
long displacements. The latter relies on the elimination of
arbitrarily large jumps in variable values, effectively apply-
ing a truncation on the distribution. Such a truncation is
justified by the physical limitations in any system. For
example, natural systems such as earthquakes, forest fire
areas, and even the fault lengths on Earth and Venus are
studied using upper-truncated power laws, which yield
more accurate system parameters [4].
The generalized central limit theorem (GCLT) states that

the distribution of sums of Lévy variables SN ¼ P
N
1 xi,

called Lévy sums, remains in the Lévy domain [38,39]. The
introduction of a truncation forces the truncated Lévy sums

to converge to a Gaussian process, thus precluding the
diverging variance and resolving the infinity paradox [36].
Such a convergence is ultraslow, requiring a remarkably
large number of summand variables. Therefore, reports on
data from such systems remain limited to the applicability
of a truncated power law. We find in our current studies that
the coherent random laser based on nonresonant feedback
qualifies as a physical system that inherently captures
the convergence of a truncated Lévy sum to a Gaussian
process. By investigating that range of disorder where the
complete non-Gaussian and Gaussian behavior is observed,
we show that the intensity statistics are completely
described by a single platform of exponentially tempered
Lévy sums. We obtain excellent agreement between the
predicted behavior and our experimental observations.
In the nonresonant random laser, the distribution of

intensity acquired by various spontaneously emitted pho-
tons is given by PðIÞ ∝ I−ð1þμÞ, where μ ¼ lg=hLi, lg is
the gain length, and hLi is the mean length of the photon
paths [31]. Thus, the intensity acquired by a single photon
path is a Lévy variable. However, it is not possible to access
the intensities of the individual paths, as several of them
coexist in the system and cannot be spatially or temporally
separated for observation. Figure 1 schematizes the exper-
imental measurement of the emission. Three representative
photon paths are shown, whose emission frequency is
assumed to be within the spectral resolution. Each path
realizes a Lévy distributed intensity variable with exponent
μ. All such paths are directed by a combination of a grating
and a curved mirror inside the spectrometer onto the same
pixel of the detector, which measures the total intensity
summed over all paths. Thus, the measurement automati-
cally sums the Lévy variables generated in the pulse.
Furthermore, the finite energy of the excitation pulse limits
the total gain in the random laser, which puts a truncation
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on the individual intensities. Statistics are constructed out
of the measured intensity values in thousands of such
pulses. The statistical procedure utilizes an α-stable fit
[33,34], which yields a tail parameter 0 < α ≤ 2 (see Sec. I
of the Supplemental Material [40]). α parametrizes the
statistical distribution, since α < 2 indicates Lévy behavior,
and α ¼ 2 denotes Gaussian behavior. The plot in Fig. 1
elucidates calculated results on the effect of truncation on α
of the distribution constructed by taking sums of power-law
distributed random variables with exponent μ ¼ 1. The
black squares represent an untruncated power-law distri-
bution, wherein α ¼ 1 as expected from the GCLT.
Subsequent finite truncation values of Itr ¼ 108, 107,
106, and 105 result in α → 2. The crossover to the
Gaussian domain requires the number of Lévy variables
N ¼ AðItrÞμ, where A is a constant ∼Oð1Þ [36]. Thus, the
domain of random laser fluctuations will depend upon N,
Itr, and μ of the individual Lévy variables. We compute
these parameters for various excitation energies, disorder
strengths (parametrized by the mean free path l), and
sample sizes.
Accurate estimation of the Lévy variables requires the

knowledge of exact photon paths and correct gain distri-
butions. To that end, we analyzed the transport of light as
random walks of photons in a three-dimensional random
amplifying medium. This well-used computation has been
described in complete details in Refs. [13] and [43]. In
brief, the random walks of excitation photons first yield the
realistic gain distribution in the medium. The excitation
photons are launched from the front face, with a Gaussian
transverse spatial distribution whose width emulated the

pump laser focal spot. The sample space (1 × 1 × 1 cm)
was divided into a 3D grid that recorded the population
inversion with a resolution of 2 × 2 × 2 μm. Subsequently,
spontaneously emitted photons that underwent random
walks in the inverted medium deexcited the system,
realizing the random laser emission. Relevant parameters,
such as the intensity, path length, wavelength, etc., of these
exiting photons are recorded for subsequent analysis.
Figure 2 illustrates the simulation data and the parameter

estimation for a sample with l ¼ 1500 μm and the exci-
tation energy Ep ¼ 1 μJ. The inset shows the intensity
distribution PðIÞ of the scattered and the unscattered
photons, exhibiting the expected power-law behavior.
Parameter estimation is carried out using the survival
function ½1 − FðIÞ�, where FðIÞ is the cumulative distri-
bution function. The tail exhibits a smooth falloff, reflect-
ing a gradual truncation. Such a behavior is indeed
observed in real systems, where power-law infinities are
tempered by an exponential smoothening [44,45]. We
adopted a maximum likelihood estimate (MLE) method
[46] to fit an exponentially tempered power law (∼x−μe−βx)
onto the data. (See Sec. II of the Supplemental Material
[40].) The β parameter quantifies the truncation such that
1=β ∼ Itr, the value around which the exponential temper-
ing begins. The red lines indicate the MLE fits, which cover
the complete data including the falloff. The exponent
μ ¼ 0.52 for the unscattered light was less than that of
the multiply scattered light (μ ¼ 0.68) since the scattered
photons navigate into the weakly pumped peripheral
regions of the system, reducing the gain. Importantly, the
unscattered component was strongly truncated (Itr ¼ 185)
compared to the scattered fraction (Itr ¼ 3 × 104). We
consistently found small Itr values for unscattered light
for any excitation or disorder strength.
While the MLE fits provided μ and β of the exponentially

tempered power-law distributions, the number of Lévy
variables Nm was estimated as the number of photon paths

FIG. 1 (color online). Schematic of the summing process of
Lévy variables in the experiment. Several photon paths at the
same frequency are focused by a grating-curved mirror combi-
nation (here shown only as a grating G) onto the same pixel of
the detector D, which measures them together. Plot: computed
values of tail exponent α of the distribution of sums of truncated
Lévy variables, which are distributed as a power law with μ ¼ 1.
Black squares: no truncation. Finite truncation values result in α
of the sum approaching 2, corresponding to the Gaussian domain.

FIG. 2 (color online). Survival function of the unscattered
(green squares) and scattered photons (blue circles), respectively.
Red curves: estimated exponentially tempered power-law dis-
tribution using a maximum likelihood approach, giving expo-
nents as 0.52 and 0.68 for unscattered and scattered photons.
Inset: distribution of intensity showing the power-law decay.
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incident on the detector, a parameter directly provided by
the random walk computation. Thus, the parameter set
fNm; μ; βgwas created for the scattered photons [47]. Here,
we only illustrate results in the Ep and l ranges where the
rich statistical diversity is observed, although computations
were carried out over a wider range of parameters. Figure 3
depicts the Ep dependence of the parameters for two
disorder strengths, namely l ¼ 350 μm (triangle markers)
and l ¼ 1500 μm (circle markers), and for small and large
sample sizes, namely, pump focal diameter dp ¼ 60 μm
(solid markers) and 240 μm (empty markers). Figure 3(a)
shows the power-law exponent μ of the Lévy variables,
which reduces monotonically with increasing Ep. For the
small sample size, μ < 2 indicating the Lévy distribution of
the variables for all excitation energies. For weak disorder,
μ is smaller since the excitation light propagates relatively
unhindered in the medium, creating saturation. For the
large sample size, we see that μ > 2 for Ep < 1.5 μJ
(indicated by a vertical dotted line), indicating Gaussian
statistics due to insufficient gain. This domain, therefore, is
not relevant for the convergence of the sums from a power-
law to a Gaussian process. Figure 3(b) depicts the behavior
of the truncation value Itr ¼ 1=β, which consistently
increases with pumping. The small sample exhibits large
Itr values (∼108 for Ep ∼ 2 μJ), clearly realized by the
stronger inversion. A larger truncation value implies the

allowance of larger magnitudes of the Lévy variables.
For the larger sample, Itr is reduced by about 4 orders of
magnitude due to the distribution of pump energy over a
larger volume. Interestingly, the magnitude of Itr for the
strong disorder is more than that for the weak disorder,
a trend that is reversed as compared to the dp ¼ 60 μm
sample. Figure 3(c) shows the variation of the number of
Lévy variables Nm, which is seen to increase with Ep. For
any given excitation, Nm is larger for smaller l.
Subsequently, given μ and β for various combinations

of l, Ep, and dp, exponentially tempered Lévy variables
were generated by rejection sampling, as follows. (See also
Sec. III of the Supplemental Material [40].) A power-law
distributed random variable y ¼ u−1=μ is generated, where
u is a uniform random number between 0 and 1. This y is
accepted as an exponentially tempered power-law variable
if, for another uniform random variable v ∈ ð0; 1�,
fðyÞ=gðyÞ > v, where fðxÞ ¼ x−μ−1e−βxðμþ xβÞ and
gðxÞ ¼ μ=ðxμþ1Þ. Thereafter, using the appropriate Nm, a
series of 2000 exponentially tempered Lévy sum (ETLS)
values (SN) was generated for each combination, such that
SN ¼ PNm

1 yi. PðSNÞ was analyzed using the α-stable fit
yielding the tail exponent α. The behavior of α charac-
terized the simulated system over the complete parameter
range. For immediate comparison with the experimental
behavior, we carried out experiments on a dye-scatterer
random laser, using suspensions of ZnO nanoparticles in a
2.5 mM rhodamine-methanol solution. The complete
experimental setup is discussed in Sec. IV of the
Supplemental Material [40]. A set of 2000 spectra was
grabbed for analysis. The intensity values at λ ¼ 557 nm
were extracted from the spectra to create a distribution that
was analyzed using the α-stable fit.
The calculated ETLS behavior and experimentally mea-

sured behavior of α is depicted in Fig. 4. Each image shows
three subpanels, for the varying sample sizes in terms of
focal spot size, namely, 60 μm (top), 120 μm (middle), and
240 μm (bottom). For the smallest sample size, in the weak
disorder case (l ¼ 1500 μm, the top row in the panel),
a strong Lévy behavior is indicated by the blue pixels
(α ∼ 0.9) at about Ep of 1 μJ. Here, the ETLS fails to
converge to a Gaussian distribution, owing to the small Nm,
small μ, and large Itr. Only for Ep ≥ 2.5 μJ, the Nm suffices
to drive the ETLS into a Gaussian distribution. In com-
parison, the Lévy behavior is seen to be very narrow for
l ¼ 350 μm. In this sample, for Ep < 1.5 μJ, although the
individual variables are Lévy variables [μ < 2 in Fig. 3(a)],
the small Itr in that region still forces a Gaussian behavior.
The large variation in the widths of the Lévy domains
across the disorder range also arises from the ETLS effect.
For dp ¼ 120 μm, Lévy behavior is weak since the
smallest α ∼ 1.5, and also the width of the Lévy region
does not vary significantly. Interestingly, for the larger
sample (dp ¼ 240 μm), a reversed trend is observed. Here,

FIG. 3 (color online). Variation of the parameters of the ETLS,
namely, (a) power-law exponent μ, (b) truncation value Itr ¼ 1=β,
(c) number of Lévy variables Nm with pump energy Ep as
measured using the MLE method, for two l and focal spot sizes
dp as mentioned in the legend.
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weak disorder requires a larger Ep (∼3.4 μJ) to enter the
Lévy domain as compared to the sample with l ¼ 350 μm
(Ep ∼ 2.4 μJ). This originates from the larger Itr for the
latter sample [see Fig. 3(b)], which defeats the convergence
of the ETLS into the Gaussian domain at a smaller Ep.
For l ¼ 1500 μm, conditions are appropriate for the Lévy
domain only at ∼3.5 μJ. The experimental observations
clearly show an excellent agreement with the predictions of
the ETLS model. Features such as the widths of the Lévy
domain, the magnitude of α, trends in the Lévy behavior,
etc., are very well reproduced in the observations.
In a random laser, the relative fluctuations at the various

wavelengths are not independent, as they are determined by
the gain profile of the medium. To study the λ dependence
of α, the parameter set fNm; μ; βgwas computed for a set of
wavelengths using the same procedure described earlier.
Thereafter, the ETLS constructed from these parameter sets
yielded the behavior of α shown in Fig. 5(a) (red markers),
which is in excellent agreement with the experimental data.
This spectral dependence suggests a confirmatory test for
the ETLS model. Since μ and β are inherently determined
by Ep and l, they cannot be independently tuned across
the spectrum. On the other hand, Nm is determined by the
number of photons that realize the Lévy variables, which

can also be externally fed into the random laser. The ETLS
model predicts that an increase in Nm, with μ and β
constant, aids the convergence of the sum, thus raising
α. In Fig. 5(a), the red square at λ ¼ 559 nm involved
Nm ¼ 1.4 × 105, while the lower and upper blue circles
employed Nm ¼ 3 × 105 and 6.6 × 105, respectively. We
used an external laser source that injected a certain number
of seed photons into the random laser at a fixed wavelength,
while keeping Ep and l the same. We analyzed the α
statistics of the output intensity at the seed wavelength.
(See the Supplemental Material [40]) Figure 5(b) shows the
α variation with (red markers) and without (black markers)
the seed photons. Clearly, only the α’s at the seed wave-
length (over the seed bandwidth) increase in magnitude,
obeying the spectral profile of the seed spectrum. Further,
Fig. 5(c) shows the rise in α implemented by increasing Nm
in the ETLS calculations. This expected behavior is clearly
reproduced by the experimental observations, shown in
Fig. 5(d), which plots α with seed energy Es. These
observations confirm the applicability of the ETLS model
to the statistics of random lasers.
In summary, we have presented a physical manifestation

of the stochastic process of exponentially tempered Lévy
sums that determines the complete statistical behavior
of nonresonant random lasers. The convergence of the
Lévy sum, or the failure thereof, determines the ultimate
statistical domain of the fluctuations. The theoretically
expected behavior is in excellent agreement with the
experimental observations. These studies provide a simple,
yet powerful, handle to the nontrivial statistics of this
complex optical system, and create a platform for further
involved computational studies. We anticipate these results

FIG. 5 (color online). (a) Wavelength dependence of α as seen
in experiments (solid line) and the ETLS model computations
(red ▪’s). Blue circles show α when additional numbers of Lévy
variables are assumed only at λ ¼ 559 nm. (b) Experimental
measurement of α after introducing additional Lévy variables by
a seed pulse at λ ¼ 559 nm. Seed spectrum is shown. (c) ETLS-
computed variation of α with number of variables Nm where, Nm
is a total of Lévy variables realized by spontaneous emission
photons Nsp and seed photons Ns. (d) Experimental variation of α
with seed energy Es.
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FIG. 4 (color). (a) Computed behavior of tail exponent α of the
ETLS as a function of Ep and l. Three images indicate focal spot
size of 60 μm (top), 120 μm (middle), and 240 μm (bottom).
(b) Experimentally measured behavior of α from a dye-scatterer
random laser for the same parameters, showing an excellent
agreement with the computed system.
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to trigger the search for parallel scenarios in other research
fields, as well as the study of the applicability of this
stochastic process in other situations.
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