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We propose and theoretically investigate a nanomechanical heat engine. We show how a levitated
nanoparticle in an optical trap inside a cavity can be used to realize a Stirling cycle in the underdamped
regime. The all-optical approach enables fast and flexible control of all thermodynamical parameters
and the efficient optimization of the performance of the engine. We develop a systematic optimization
procedure to determine optimal driving protocols. Further, we perform numerical simulations with realistic
parameters and evaluate the maximum power and the corresponding efficiency.
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During the last decade, significant progress in the
fabrication of mechanical devices at the micro- and nano-
scale has been achieved [1]. While this development
enabled a plethora of technological applications, it also
allows new experiments at the foundations of modern
physics. These devices operate in a regime where thermal
fluctuations are relevant, a situation which requires appro-
priate theoretical tools. In this direction, research in
stochastic thermodynamics has been very successful at
extending the laws of macroscopic thermodynamics to the
level of single trajectories [2,3]. The discovery of fluc-
tuation theorems has further opened the way to a systematic
investigation of far-from-equilibrium processes [4,5]. On
the other hand, experiments with nano- and micromechan-
ical objects have entered the domain where quantum
fluctuations dominate. Important examples are the recent
achievements of the cooling of mechanical oscillators to
the ground state [6–8] and the experimental demonstration
of quantum state preparation [6] and entanglement gen-
eration [9].
A paradigmatic system for the study of stochastic

thermodynamics is optically trapped micro-and nanobeads
[3–5,10]. Optical tweezers enable fast control of the
potential landscape experienced by the particles and accu-
rate recording of their trajectories. In a pioneering experi-
ment, this approach has been used to demonstrate a
classical micromechanical Stirling engine [11], where the
temperature of the liquid heat bath was controlled by laser
absorption. While this is a very natural environment, there
are limitations on the accessible parameter regime for the
temperature and the optimization of the protocols used to
implement the thermodynamic cycle.
The future realization of quantum heat engines requires

the investigation of much more isolated systems. Towards
this end, a concrete experiment of building an Otto heat
engine using a single ion in a Paul trap has been put forward
[12,13]. This ion is completely isolated from its natural
environment, which is substituted by a reservoir of light

that is engineered via Doppler cooling. More recently, a
scheme to realize an optomechanical quantum heat engine
that operates on polariton modes in the strong coupling
regime has been suggested [14].
In this Letter, we propose a levitation approach to

nanomechanical heat engines. Submicron particles are
optically trapped in a moderate vacuum in a harmonic
potential with a variable frequency. The heat bath is
provided by a thermal environment (the rest gas inside
the trap) in combination with optomechanical cavity
cooling [15–20], which provides additional tunable damp-
ing. The motion of the particle is underdamped (in contrast
to the experiment in Ref. [11]) and is only weakly coupled
to the optical cavity, reducing dissipative effects.
Altogether, this approach combines the excellent control
offered by optical trapping with the fast optomechanical
control of the center-of-mass temperature provided by
cavity cooling. This allows flexibility in optimizing the
heat engine and gives access to a large temperature regime,
in principle, down to the quantum ground state.
Optimization is an essential tool for maximizing the
performance of a machine given existing constraints
[21]. In the overdamped regime, the thermodynamic
optimization problem has been solved for harmonic [22]
and nonharmonic [23] systems. Explicit optimal protocols
have been obtained for the Carnot cycle [24] but, to our
knowledge, have never been implemented experimentally.
By contrast, optimization in the underdamped case is
notoriously more difficult [25], owing to the larger
parameter space, and has been little explored. In the
following, we begin by describing the working principles
of an all-optical optomechanical heat engine. We present a
systematic procedure for determining the driving protocol
that maximizes the power output and evaluating the
corresponding efficiency at maximum power. Finally,
we numerically simulate the operation of the engine for
a state-of-the-art levitated optomechanical system [26] and
discuss the occurrence of jumps in the optimal protocols.
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Optomechanical heat engine.—We consider a nanopar-
ticle trapped in the optical cavity shown in Fig. 1(a). In our
scenario, the particle is well confined inside the optical trap
such that its center-of-mass motion xðtÞ can be described
by a harmonic oscillator of frequency Ω0 in a thermal
environment. Optomechanical interaction between the light
field in the cavity and the mechanical oscillator modifies its
spring constant and damping [27,28]. We describe the
system by the following effective Langevin dynamics with
the additional damping term due to sideband cooling

ẍþ ðγth þ γoptÞ_xþ Ω2x ¼ Fth=m: ð1Þ

Here, γth (γopt) denotes the damping coefficient due to the
surrounding gas (sideband cooling), Ω the effective fre-
quency of the oscillator,m the mass of the nanoparticle, and
Fth a white noise force generated by the collisions with the
surrounding gas at temperature T [29]. Typical experimen-
tal parameters are summarized in Table I. The steady
temperature of the particle is given by Teff ¼ Tγth=γeff < T.
The proposed experimental scheme for the realization of

the engine is sketched in Figs. 1(a) and 1(b). A submicron
particle is optically trapped at the intensity maximum of
two standing waves in the cavity field whose intensity
maxima are shifted in position with respect to each other.
One of the fields (cooling field) serves for cavity cooling
and can be driven detuned from the cavity resonance for
that purpose. The other field (trapping field) is always
driven with a resonant beam and does not directly partici-
pate in the optomechanical interaction. The cooling beam is

used to control the optomechanical damping γopt by its
power Pc and detuning Δc. This particular case of a self-
trapping approach has recently been demonstrated exper-
imentally in Ref. [26]. The optomechanical coupling
between cooling field and nanoparticle can not only be
used to manipulate, but also to detect its motion. The axial
motion of the particle generates a phase modulation of the
cooling beam, which can be detected by heterodyne
detection in transmission of the cavity [26]. In this way,
it is possible to obtain the time-resolved trajectory of the
particle and, thus, evaluate all the thermodynamic quan-
tities, like heat, work, efficiency, and power of the engine
with the help of stochastic thermodynamics [2,3].
The frequency Ω0 of the mechanical resonator is

determined by the occupation Nc and Nt of the cooling
and trapping modes, respectively. In addition, the optical
spring effect results in a shift of the mechanical frequency

TABLE I. Values of the control parameters (Ω; Teff ) of the heat
engine and (Nc;Δc) of the optomechanical systems used in the
numerical simulations. The parameters for the cycle are the values
just after the indicated steps. Further experimental parameters
are T ¼ 293 K, γth=2π ¼ 1.80 kHz (at ∼1 mbar), γopt=2π ¼
1.35 kHz, and the cavity linewidth κ=2π ¼ 180 kHz.

Cycle step Teff (K) Ω=2π (kHz) Δc=2π (kHz) Nc=108

4 → 1 293 600 0 40.6
1 → 2 293 150 0 2.54
2 → 3 167 150 64.3 2.53
3 → 4 167 600 334 40.4

FIG. 1 (color online). Implementation of a Stirling cycle by cavity cooling of a levitated particle. (a) The nanoparticle is levitated in the
optical field inside a Fabry-Perot cavity driven by two lasers that address subsequent longitudinal modes (cooling and trapping beam).
Collisions with air molecules couple the center-of-mass motion of the particle to the thermal environment at room temperature with a
damping rate γth. Additional damping γopt is provided by optomechanical coupling. (b) The combined intensity distribution of the two
fields defines the optical trap position and frequency Ω0. Optomechanical coupling to the cooling mode is ensured by a phase shift
between the two modes at the particle position. (c) Cooling is achieved by an enhanced scattering of photons into the blue sideband when
the cooling beam is red detuned from cavity resonance. (d) The cycle in terms of the control parameters (Nc;Δc). (e) The resulting
Stirling engine cycle consists of two isothermal and two isochoric processes. We restrict the accessible frequencies for the optimization
procedure to values that can be directly achieved in a recent experiment [26] (green shaded area, see Table I); however, a wider range of
parameters should be easily accessible.
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Ω0 → Ω and depends on the detuning Δc [16,31]. For
simplicity, we keep the position of the optical trap fixed,
which can be achieved by keeping the ratio of the photon
occupation of the cooling and trapping mode constant at
μ ¼ Nc=Nt [see Fig. 1(b) and [32] ].
The temperature of the particle may be regulated via

sideband cooling. For the above experimental configura-
tion, the theory of sideband cooling for standard clamped
optomechanics [15–20,26] directly applies. In this scheme,
the oscillating particle scatters photons into optical side-
bands of frequencies ωc � Ω at rates A�, known as Stokes
and anti-Stokes scattering, respectively. For Δc > 0 (red
detuning), anti-Stokes scattering dominates Stokes scatter-
ing. This process results in a damping of the center-of-mass
motion of the particle with an additional friction coefficient
γopt ¼ A− − Aþ that can be easily varied via the cavity
detuning Δc.
The two thermodynamic parameters of the optomechan-

ical heat engine, the frequency Ω, and the optical damping
γopt (which sets the effective temperature Teff ), can, thus,
be directly tuned via the two control parameters of the
experiment, the detuning Δc and the power of the cooling
laser, which governs Nc. A Stirling cycle that consists of
two isochoric and two isothermal transformations may then
be implemented through the following steps: (1) The
particle interacts with a bath at constant temperature T
via the coupling γth (both laser fields are resonant, Δc ¼ 0).
The frequency Ω is lowered during time τhot by changing
the cavity fields from the high initial value Nc;h to the lower
value Nc;l. (2) The temperature of the bath is reduced to Teff
by detuning the cooling laser to Δc;l. The frequency Ω is
kept constant. (3) The particle interacts with a bath at
constant temperature Teff via the coupling γeff . The fre-
quencyΩ is increased to its initial value during time τcold by
enhancing the cavity fields from Nc;l to Nc;hΔ . The detuning
Δc is adjusted to keep γopt constant [Fig. 1(d)]. (4) In the
last isochoric step, all control parameters are switched back
to their initial values.
The above cooling-heating sequence based on sideband

cooling is illustrated in Fig. 1(c). The Stirling cycle is
shown in Fig. 1(e) for the thermodynamic parameters
(Ω; Teff ), and in Fig. 1(d) for the control parameters
(Nc;Δc). A summary of the values used in the simulations
(see Figs. 2 and 3) is given in Table I. (See [32] for details
on the equations and experimental aspects).
Optimal protocols.—Next, we shall determine the driv-

ing protocol that maximizes the power output of the engine.
We begin by writing the mean heat exchanged between the
particle and bath during a time interval [t; tþ τ] [2,3]

Q ¼ γthkBTτ −mγeff

Z
tþτ

t
dt0σvðt0Þ; ð2Þ

where σvðtÞ ¼ hv2ðtÞi is the mean-square velocity of
the particle. The work done by the engine during a full

cycle is −W ¼ Qhot þQcold. The power and efficiency are
accordingly

P ¼ Qhot þQcold

τhot þ τcold
; η ¼ 1þQcold

Qhot
: ð3Þ

In order to compute the above quantities, we need to
evaluate the dynamics of σvðtÞ in Eq. (2). Multiplying the
Langevin equation (1) by v, respectively, x, and taking the
ensemble average, we obtain the two equations

FIG. 2 (color online). Power P� and efficiency at maximum
power η� as a function of the ratio of the bath temperatures,
T=Teff , for various optimization steps, n ¼ 1; 2, and 3. The dotted
line shows the performance for n ¼ 3 without the experimental
constraints on the rate of frequency change.

FIG. 3 (color online). Optimal driving protocols λðtÞ for a
temperature ratio T=Teff ¼ 1.75 and the same parameters as in
Fig. 2 (top to bottom). The red (blue) shaded regions denote
coupling to the hot (cold) bath, the corresponding power output
P� (in units of γthT) and efficiency η� are also stated. Fast
frequency variations occur at the transitions between hot and cold
baths for higher-order optimization.
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_σv þ 2γeffσv þ 2λ _σx ¼
2γeffkBTeff

m
; ð4aÞ

σ̈x þ γeff _σx þ λσx − 2σv ¼ 0; ð4bÞ
where σx ¼ hx2ðtÞi is the mean-square displacement and
λðtÞ ¼ Ω2ðtÞ the spring constant of the oscillator. We
choose the latter as the control parameter for maximizing
the powerP. The steady state solutions of Eqs. (4) are given
by σv ¼ λσx ¼ kBTeff=m corresponding to equilibrium at
temperature Teff . In the overdamped limit, γeff ≫ Ω, the
velocity thermalizes quasi-instantaneously and the dynam-
ics can be described in terms of the slow position variable
only. In this regime, the optimal protocol λðtÞ can be
obtained analytically [24]. By contrast, in the underdamped
limit, γeff ≪ Ω, the search for the optimal protocol requires
solving a set of coupled, nonlinear differential equations for
λðtÞ with periodic boundary conditions, a task which is
daunting, even numerically.
We tackle this challenge by introducing piecewise linear

trial protocols λðtÞwith n ¼ 1; 2; 3;…. linear segments that
we optimize numerically. This systematic expansion allows
us to find the optimal protocol to any desired accuracy. The
limit n → ∞ corresponds to the true optimal protocol. As
we will show, the expansion converges rapidly to a stable
solution (see Fig. 2). The first term, n ¼ 1, is a linear
change of λðtÞ during the coupling to both hot and cold
baths

λðtÞ ¼
( ðλ2−λ1Þt

τhot
þ λ1; 0 < t < τhot

ðλ1−λ2Þðt−τhotÞ
τcold

þ λ2; 0 < t − τhot < τcold:
ð5Þ

This simple linear protocol depends on the four parameters
τhot, τcold, λ1, and λ2. We find the maximum power P� and
the corresponding efficiency η� by numerically solving
Eqs. (4) for this protocol, computing the corresponding
power output and optimizing with respect to the four
parameters, keeping the ratio of the temperatures of the
two baths, T=Teff , fixed, see [32]. For the second term,
n ¼ 2, we subdivide each of the two linear pieces of the
protocol into two parts, giving a total of eight parameters to
optimize. We may continue this systematic procedure by
subdividing each linear segment into n parts. Figure 2
shows the maximum power P� and the corresponding
efficiency η� as a function of the temperature ratio T=Teff ,
for n ¼ 1; 2, and 3. We have performed the numerical
optimization by taking the experimentally accessible range
of parameters displayed in Fig. 1(e) into account. We
observe that both power and efficiency at maximum power
are significantly improved when going from n ¼ 1 (four
parameters) to n ¼ 2 (eight parameters). However, the
performance of the engine is only slightly enhanced by
adding an additional term (12 parameters), indicating that
the expansion converges quickly [37]. Interestingly, the
efficiency at maximum power is bounded by the

Curzon-Ahlborn efficiency, ηca ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Teff=T

p
[38],

which it approaches for small temperature differences.
The optimal protocols found for n ¼ 1; 2, and 3 are

shown in Fig. 3 for the parameters given in Table I. We
note, again, a substantial difference between n ¼ 1 and
n ¼ 2, and minor changes when going to higher orders.
The coupling times to hot and cold baths are generally not
equal, since γeff > γth. The most striking difference is the
appearance of fast variations of the frequency at the
transitions between hot and cold baths. Discontinuities
in the optimal driving protocol were predicted in the
overdamped regime [24]. These jumps are interesting,
since they are absent in a linear response approach, and
their occurrence is, therefore, a hallmark of far-from-
equilibrium behavior [3]. From a physical point of view,
fast frequency variations permit an almost instantaneous
change of the mean-square velocity of the particle, and,
hence, reduce dissipation and increase engine performance
[25]. We note that the frequency jumps occur due to the
instantaneous changes in temperature during the isochoric
steps, which maximize the power output. In the exper-
imental system, both the frequency jumps and the instanta-
neous temperature switching can only be realized in an
approximate manner. If the relative rate of change in the
frequency, _Ω=Ω, becomes larger than the cavity decay rate,
transients in the cavity field have to be taken into account.
This experimental restriction limits the attainable power
and efficiency at large temperature differences compared to
the unrestricted system (dotted line in Fig. 2). Nevertheless,
the essential role of the frequency jumps in enhancing the
performance of the heat engine should be testable in the
experiment by evaluating efficiency and power for different
driving protocols (with and without jumps).
Conclusions.—We have introduced a concrete experi-

mental scheme for the realization of an all-optical heat
engine in the underdamped regime. We have performed
numerical simulations of the stochastic engine using realistic
parameters. Further, we have developed an efficient opti-
mization procedure that allows us to determine the optimal
driving protocols to any desired accuracy in a systematic
manner. These optimal protocols increase the power output
and the efficiency of the engine by introducing rapid changes
in the trapping frequency. Being able to realize this kind
of fast control experimentally is a distinct advantage of the
all-optical nature of the heat engine. As we have shown,
levitated cavity optomechanics is a powerful novel tool for
the study of far-from-equilibrium thermodynamics in the
underdamped regime. An extension of our analysis to the full
quantum mechanical case is possible, accompanying strong
experimental efforts to push levitated systems to operate in
the quantum regime [20].
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