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A fundamental property of a quantum system driven by an external field is that when the field is turned
off the positions of its response frequencies are independent of the time at which the field is turned off. We
show that this leads to an exact condition for the exchange-correlation potential of time-dependent density
functional theory. The Kohn-Sham potential typically continues to evolve after the field is turned off, which
leads to time dependence in the response frequencies of the Kohn-Sham response function. The exchange-
correlation kernel must cancel out this time dependence. The condition is typically violated by
approximations currently in use, as we demonstrate by several examples, which has severe consequences
for their predictions of time-resolved spectroscopy.
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Time-resolved spectroscopies are increasingly being
used to characterize and analyze processes in molecules
and solids. Applying an ultrafast pump pulse to create a
nonstationary state, which is then monitored in time by a
probe pulse, is a central technique in the field of femto-
chemistry [1], and has revolutionized our understanding of
chemical reactions and photoinduced processes in a wide
range of systems including biological molecules and nano-
scale devices. Until recently, experiments primarily probed
ionic dynamics where time-resolved spectra reflect changes
in the ionic configuration during a reaction [2]. The recent
advent of attosecond pulses enables pump-probe experi-
ments at the time scale of electron dynamics [3], allowing
investigations of processes on the electronic time scale and
revealing a wealth of new phenomena and new possibilities
for characterizing a system.
A scalable theoretical method to model electron dynam-

ics, reliable beyond the perturbative regime, is crucial to
simulate and interpret experimental results and to suggest
new experiments and materials to study. Time-dependent
density functional theory (TDDFT), an exact reformulation
of many-electron quantum mechanics, stands out with its
balance between accuracy and computational cost [4–6].
Noninteracting electrons evolve in a one-body potential
such that the exact one-body density nðr; tÞ of the true
system is reproduced. However, in practice the exchange-
correlation (XC) contribution to the potential must be
approximated as a functional of the density and the initial
interacting and Kohn-Sham (KS) states, Ψ0, Φ0, respec-
tively: vXC½n;Ψ0;Φ0�ðtÞ. Most TDDFT calculations nowa-
days use adiabatic functionals, which depend exclusively
on the instantaneous density, input into a ground-state
functional: vAXC½n;Ψ0;Φ0�ðtÞ ¼ vg:s:XC½nðtÞ�.
TDDFT has been extensively and successfully applied

to model the linear response of large systems and to

elucidate experiments in the nonperturbative regime, e.g.,
Refs. [7–10], including coherent phonon generation,
strong-field and thermal ionization, harmonic generation,
and exploring photovoltaic materials, to name a few. At the
same time, however, recent work on small systems where
numerically exact or high-level wave function methods are
applicable has shown that the approximate TDDFT func-
tionals can yield significant errors in their predictions of the
dynamics [11–21], and sometimes they fail even qualita-
tively [15–21].
A critical aspect of nonequilibrium dynamics is the

response frequencies of the system, since these play a
crucial role in the response to an applied field, and in
interferences in the dynamics. As pointed out recently,
approximate functionals yield erroneous time-dependent
electronic structure when subject to external fields [20–22].
This spurious “peak shifting” makes TDDFT simulations
of resonant coherent control very challenging [20] and the
interpretation of time-resolved spectroscopic simulations
difficult.
Let a “pumped system” refer to a system which has been

driven out of its ground state by an external field for time
T , after which the field is turned off. In this Letter, we
derive an exact condition that the XC functional must
satisfy in order to respect a fundamental property of
the response frequencies of the pumped system: For times
T short enough that ionic motion can be neglected, its
response frequencies are independent of T . The oscillator
strengths may change in strength and sign, but the response
frequencies remain constant. We define the response
frequencies via poles in the density-density linear
response function evaluated about an arbitrary state in
the absence of any externally applied fields. Most TDDFT
functionals currently in use violate this condition, with
severe implications for the modeling of time-resolved
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spectroscopy. Several model examples are given to illus-
trate the impact of the violation on dynamics, including
examples of an adiabatic functional that, despite inaccurate
response frequencies, approximately satisfies this condi-
tion, and consequently yields accurate dynamics.
After the field is turned off at time T , then, treating the

nuclei as stationary, the Hamiltonian is static, Ĥð0Þ ¼
T̂ þ Ŵ þ v̂ð0Þext , the sum of the kinetic energy, electron
interaction, and electron-nuclear interaction operators,
respectively. The electronic state can be expanded in terms
of the eigenstates Ψn: Ψðt ≥ T Þ ¼ P

ncnðT ÞΨne−iEnðt−T Þ,
with Ĥð0ÞΨn ¼ EnΨn. We denote the density of this state as

nð0ÞT ðr; tÞ, defined for times t ≥ T . Throughout the Letter,
the superscript (0) indicates a quantity in the absence of
external fields. We define a nonequilibrium response
function to describe the density response to a perturbation
δvextðr; tÞ (probe) applied after time T :

~χ½nð0ÞT ;ΨðT Þ�ðr; r0; t; t0Þ ¼ δnðr; tÞ
δvextðr0; t0Þ

����
nð0ÞT ;ΨðT Þ

: ð1Þ

Here the functional dependences on the left-hand side
follow from the Runge-Gross theorem [4], considering the
onset of the free evolution (t ¼ T ) as the initial time. [Note
that Eq. (1) applies for the response of any arbitrary state
ΨðT Þ, not just those reached by a pump field.] Following
derivations in standard linear response theory [23] but

generalized to an arbitrary initial state, ~χ½nð0ÞT ;ΨðT Þ�ðr;
r0; t; t0Þ ¼ −iθðt − t0ÞhΨðT Þj½n̂ðr; tÞ; n̂ðr0; t0Þ�jΨðT Þi, with
n̂ðr; tÞ ¼ eiĤ

ð0Þtn̂ðrÞe−iĤð0Þt, which yields

~χ½nð0ÞT ;ΨðT Þ�ðr; r0; t; t0Þ ¼ −iθðt − t0Þ
X
n;m;k

PnmðT Þ

× ½fnkðrÞfkmðr0Þei½ðωnkþωmkÞ=2�ðt−t0Þeiωnm½ðtþt0Þ=2�

− ðr ↔ r0; t ↔ t0Þ�; ð2Þ

where fjlðrÞ ¼ hΨjjn̂ðrÞjΨli, ωjl ¼ Ej − El, PjlðT Þ ¼
c�jðT ÞclðT Þ, and ðr ↔ r0; t ↔ t0Þ simply mean to
exchange r with r0 and t with t0, and vice versa, in the
first term inside the parenthesis. A Fourier transform with
respect to τ ¼ t − t0 yields

~χ½nð0ÞT ;ΨðT Þ�ðr; r0;ω; TÞ

¼
X
n

PnnðT Þ
X
k

fnkðrÞfknðr0Þ
ω − ωkn þ i0þ

þ
X
k;n≠m

PnmðT Þ e
iωnmTfnkðrÞfkmðr0Þ
ω − ωknþωkm

2
þ i0þ

þ c:c:ðω → −ωÞ;

ð3Þ

where T ¼ ðtþ t0Þ=2 and c:c:ðω → −ωÞ denotes the com-
plex conjugate of all terms with ω replaced by −ω.
The poles of ~χ½nð0ÞT ;ΨðT Þ�ðr; r0;ω; TÞ have positions

independent of T and are completely determined by the
spectrum of the unperturbed Hamiltonian. They correspond
to excitations and deexcitations from the states populated at
time T , cnðT Þ ≠ 0. Their residues, determining the ampli-
tude and sign of the spectral peaks, depend on the state
ΨðT Þ and on transition densities between the eigenstates.
The poles in the second term in Eq. (3) may look unusual,
being the average of two energy differences, but these turn
into simple energy differences once the response function
Eq. (1) is integrated against the external potential, and the
observable δnðr; tÞ resonates at frequencies of the unper-
turbed system. Note that when ΨðT Þ is the ground state of
Hð0Þ, Eq. (3) reduces to the usual linear response function in
Lehmann representation.
Turning now to the TDDFT description, we find a very

different picture. Imagine solving the time-dependent KS
equations while the field is on, and let ΦðT Þ denote the KS
state reached at time t ¼ T when the field is turned off.
Unlike the interacting system, the KS system evolves in a

potential vð0ÞS ðr; tÞ ¼ vS½nð0ÞT ;ΦðT Þ�ðr; tÞ that typically con-
tinues to evolve in time even in the absence of external
fields [24–26]. This is true for the exact KS potential, as
well as for approximate ones, as a consequence of the XC
potential being a functional of the time-dependent density.

The time dependence of vð0ÞS ðr; tÞ implies that the
eigenvalues of the instantaneous KS Hamiltonian change
in time for t > T , when either the exact or approximate
functionals are used [27]. But, except for special cases (see
below), these eigenvalue differences are not the KS

response frequencies, since Hð0Þ
S ¼ T þ vð0ÞS ðr; tÞ is time

dependent. The nonequilibrium KS response function at
time t ¼ T ,

~χS½nð0ÞT ;ΦðT Þ�ðr; r0; t; t0Þ ¼ δnðr; tÞ
δvSðr0; t0Þ

����
nð0ÞT ;ΦðT Þ

; ð4Þ

has poles in its ðt − t0Þ Fourier transform that define the KS
response frequencies, and these are typically T -dependent
(for either exact or approximate functionals; see example
below). Because the interaction picture here involves a

time-dependent Hamiltonian, Hð0Þ
S ðtÞ, the density operators

involve time-ordered exponentials, and a simple interpre-
tation of its Fourier transform with respect to ðt − t0Þ,
~χSðr; r0;ω; TÞ, in terms of eigenvalue differences of some
static KS Hamiltonian, is generally not possible. Still, from
the fact that the physical and KS systems yield the same
density response, we can derive a Dyson-like equation
linking the two response functions:

~χ−1ðω; TÞ ¼ ~χ−1S ðω; TÞ − ~fHXCðω; TÞ; ð5Þ
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dropping the spatial arguments and functional dependen-
cies to avoid clutter. We defined the generalized Hartree-
XC kernel as ~fHXC ¼ 1=jr − r0j þ ~fXC, where

~fXC½nð0ÞT ;ΨðT Þ;ΦðT Þ�ðr;r0; t; t0Þ ¼ δvXCðr; tÞ
δnðr0; t0Þ

����
nð0ÞT ;ΨðT Þ;ΦðT Þ

:

ð6Þ

The generalized kernel must shift the T -dependent
response frequencies of the KS system to the T -independent
ones of the interacting system. We can now state the exact

condition: Let ωi be a pole of f~χ−1S ½nð0ÞT ;ΦðT Þ�−
~fHXC½nð0ÞT ;ΨðT Þ;ΦðT Þ�g−1, then ωi should be invariant
with respect to T :

dωi

dT
¼ 0: ð7Þ

This gives a strict condition that is particularly important in
time-resolved spectroscopic studies [28] and in resonant
dynamics: in some cases, more important than accuracy in
the actual values of the predicted response frequencies is
their invariance with respect to T . Approximate kernels may
shift the poles of the KS response function towards the
true response frequencies, but unless they cancel the T -
dependence of the KS poles, they will give erroneously
T -dependent spectra.
This has implications even in the cases where the nuclei

cannot be considered as clamped. There, in the physical
system, the electronic excitations couple to ionic motion, so

that the potential vð0Þext , which depends on the nuclear
positions, depends on T and on the time delay between
pump and probe. The time-resolved resonance spectrum
can then be interpreted as “mapping out” the potential
energy surfaces of the molecule. Time dependence should
arise purely from ionic motion: spurious time dependence
in approximate TDDFT simulations arising from violation
of condition (7) in the limit of clamped ions will muddle the
spectral analysis in the moving-ions case, and could be
mistaken for changes in the nuclear configuration.
The exact satisfaction of condition (7) is generally

difficult for approximate functionals, but reasonable results
could be obtained if its violation is weak. Shortly, we will
give examples where a functional approximately satisfies
Eq. (7) and yields accurate resonant dynamics, despite an
inaccurate value of the resonant frequency. On the other
hand, we will find cases where the response frequency
given by an approximate functional is quite accurate at time
T but where violation of condition (7) leads to a drastic
qualitative failure in the dynamics.
Before turning to examples, consider when the pumped

(interacting) system is in a stationary excited state, so it has

a static density: nð0ÞT ¼ nk, the density of the kth excited
state. Within the adiabatic approximation, the KS potential

also becomes constant [25,29], and we observe that the
state ΦðT Þ ¼ Φk solves the self-consistent field (SCF)

equations for the static potential vð0ÞS ½nk;Φk�. An expression
for ~χS½nk;Φk�ðω;T Þ analogous to Eq. (3) can be found,
with the poles given by the eigenvalue differences of the

corresponding Hð0Þ
S . Denoting these KS frequencies as ωk

S;i

(the ith KS frequency of the potential vð0ÞS ½nk;Φk�), the
exact condition (7) can be turned into a condition on a
matrix equation directly for the interacting frequencies.
Within a single-pole approximation, the condition is that

ωi ¼ ωk
S;i

þ 2

Z
d3r d3r0ϕk

i ðrÞϕk
aðrÞ ~fkHXCðr; r0Þϕk

i ðr0Þϕk
aðr0Þ;

ð8Þ

for spin-saturated systems, must be independent of k. In
Eq. (8), ϕk

i , ϕ
k
a are the initial and target-final KS orbitals of

potential vð0ÞS ½nk;Φk�. For spin-polarized systems and non-
degenerate KS poles, replace ~fHXC with ð1=jr − r0j þ ~fσ;σXCÞ.
The violation of this condition is responsible for the
spurious peak shifting between fluorescence and absorption
recently observed in Refs. [20–22].
We illustrate the consequences of the exact conditions

Eqs. (7) and (8), using the example of resonant charge-
transfer (CT) dynamics. A simple model Hamiltonian of
two soft-Coulomb interacting electrons in one dimension
[11,16,30–34] allows us to compare with exact results. We
take vextðxÞ¼−2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþR=2Þ2þ1

p
−2.9=cosh2ðxþR=2Þ−

1=cosh2ðx−R=2Þ with R ¼ 7 a:u: with zero boundary
conditions at �50 a:u:

FIG. 1 (color online). Dipole moments calculated from the
center of the double well: exact (black), EXX (red), LSD (green),
and SIC LSD (blue), driven at resonant ωi for each. The initial
and target-final KS potentials are shown as insets, exact in the top
panel, and in EXX in the lower panel. Top panel: CT from the
ground state. Lower panel: CT from the “photoexcited” state.
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Resonant CT beginning in the ground state provides an
example of dramatically changing KS resonances, even for
the exact KS potential. The ground state has two electrons
in the left well, and the exact initial KS potential viS is
shown on the left in the top panel in Fig. 1. The KS CT
excitation frequency is ωi

S ¼ 2.2348 a:u:, which happens
to equal the true (interacting) CT excitation, up to the fifth
decimal place. If the exact KS system is driven by a weak
enough resonant field, it achieves the exact density of the
true CT excited state via a doubly occupied KS orbital after
half a Rabi cycle. The exact KS potential at this final time
vfS (on the right of the top panel of Fig. 1) looks very
different: it displays a step, which, in the limit of large
separation [16], results in “aligning” the lowest level of
each well. Therefore, the KS response frequencies are
completely different from those at the initial time: ωf

S ¼
0.0007 a:u: ~fHXC plays an increasingly crucial role in
maintaining constant TDDFT response frequencies of
Eq. (7), ωi ¼ ωf ¼ 2.2348 a:u:: at first its effect is small,
but as the charge transfers, its correction to the KS response
frequency increases dramatically. The dipole dynamics for
field EðtÞ ¼ 0.05 sinð2.2348tÞ a:u: is shown in top panel.
Now turning to approximations, the approximate KS

resonances also change in time significantly, but the
approximate kernel corrections are typically small, result-
ing in grave violations of conditions (7) and (8). For
example, in exact exchange (EXX), ωi

S ¼ 2.2340, while
again ωf

S tends to zero, with the fHX correction in the fifth
decimal place in both the initial and final states. As a
consequence, the EXX dipole dynamics driven at its
resonance completely fails to charge transfer, as seen in
the top panel of Fig. 1.
Other recent works have noted the failure of adiabatic

functionals in TDDFT (including the adiabatically exact)
to transfer charge across a long-range molecule
[16,18,35–38], even when their predictions of the CT
energies are very accurate [36,37], as computed from the
ground-state response. Here we attribute their failure to the
violation of condition (8), as for the case of EXX
above. The resonant frequencies predicted by the
functional in the initial state and in the target CT state
are significantly different from each other. This is due to
having one delocalized KS orbital describing the
final CT state, resulting in static correlation in the targeted
final KS system, and a grossly underestimated CT fre-
quency when computed via the response of the target CT
state. The CT frequency computed in the initial ground
state, on the other hand, can be quite reasonable, as
seen above.
We next consider CT from a singly excited state where

the KS system involves more than one orbital, and the
transferring electron is not tied to the same orbital that the
nontransferring electron is in. Simulations on real systems
indeed often start in a photoexcited state [8]. We consider a
“photoexcitation” in our model molecule that takes the

interacting system to its fourth singlet excited state,
localized on the left well. We then apply a weak driving
field, EðtÞ¼0.0067sinðωtÞa:u:, at frequencyω¼0.289a:u:,
that is resonant with a CT state that has essentially one
electron in each well (see lower panel of Fig. 1). For this
case, viS and vfS within EXX are shown; the exact ones are
similar. The exact dipole plotted there shows almost
complete CT.
We now consider TDDFT simulations of this process,

using three functionals: EXX, local-spin-density approxi-
mation (LSD), and self-interaction corrected (SIC) LSD.
For each, we begin the calculation in the fourth excited KS
state, as would be done in practice to model the process
above. However, we first relax the state via a SCF
calculation to be a KS eigenstate, so that there is no
dynamics until the field is applied, as in the exact problem.
We then apply a weak driving field of the same strength as
applied to the interacting problem, but at the CT frequency
of the approximate functional, computed from the initial
state, ωi. In Table I one can contrast this with the values for
the CT frequency computed from the target final CT state,
ωf, as well as the bare KS eigenvalue differences, ωi

S and
ωf
s . The approximate TDDFT corrections to the bare KS

values for CT are very small, as expected. Most notable is
that the CT TDDFT EXX frequencies as computed in the
initial and CT states are identical up to the third decimal
place, while there is significant difference among the SIC-
LSD values, and even more amongst LSD. In light of the
exact conditions (7) and (8), we expect EXX to resonantly
CT well, while SIC LSD would suffer from spurious
detuning, and LSD even more. Indeed, this speculation
is borne out in Fig. 1 (lower panel): EXX captures the exact
dynamics remarkably well. SIC LSD begins to CT, but
ultimately fails due to its response frequencies continually
changing during the dynamics, as reflected in the initial and
final snapshots of the frequencies given in Table I. LSD,
with its even greater difference in the initial and targeted
final response frequency, indeed fails miserably. Note that,
as in practical calculations, spin-polarized dynamics is run
from the initial singly excited KS determinant, with the idea
that results would be spin adapted at the end.

TABLE I. Bare KS and TDDFT-corrected photoexcited CT
frequencies computed in the initial, targeted final, and ground
states, in atomic units (a.u.). The exact CT frequency is ω ¼
0.289 a:u: The TDDFT values were obtained via linear response
to a δ-kick perturbation [39] and “—” indicates no peak was
discernible in the spectra, but we expect ωi ≈ ωi

S. Calculations
were performed using the OCTOPUS code [40,41]: a box of size
50 a.u., grid spacing 0.1 a.u., and time step 0.005 a.u. were used.

ωi
S ωf

S ωg:s:
S . TDDFT ωi TDDFT ωf

EXX 0.286 0.286 0.288 0.287 0.287
LSD 0.247 0.094 0.482 — 0.091
SIC LSD 0.287 0.236 0.267 0.287 0.237
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Why does EXX not suffer from spuriously time-
dependent response frequencies here? For the special
case of two electrons in a spin-symmetry-broken state,
vEXX;↑XC ¼ −vH½n↑�, so vEXX;↑S ¼ vext þ vH½n↓�. Driving
with a weak field resonant with the ↑-electron excitation,
where the ↑ is promoted in the initial state, causes only a
gentle jiggling of the ↓ electron, so that the ↑ sees an
almost static potential; in this sense EXX mimics the exact
functional, which keeps the response frequencies static.
The bare KS frequency hardly changes (see potentials in
lower figure), and, within the spin-decomposed version of
the single-pole approximation Eq. (8), the correction due to
the EXX kernel vanishes. So, absorption and emission
peaks are on top of each other. For general dynamics, we do
not advocate EXX, not even for two-electron systems (see
previous example); it works in this example because of the
conditions above that lead to the nearly constant KS
potential.
In a third example, when resonantly driving between two

locally excited states in a single well [vext ¼ −2=
ffiffiðp
x2þ

1Þ − 3=cosh2x], one finds again that the EXX frequencies
computed from each excited state are very similar,
0.824 a.u., quite different from the exact resonant fre-
quency of 0.755 a.u. Despite this large discrepancy, the
EXX dipole closely follows the exact one, due to the
approximate satisfaction of condition (8), and, likely,
condition (7), LSD again violates condition (8) the most
severely, and its dynamics is consequently the worst.
Interestingly, our exact condition could explain the

success of the “instantaneous ground-state” approximation
over the adiabatic approximation, explored in Ref. [42]:
there, for initial nonstationary states evolving in a time-
independent external field, the KS potential is always taken
as equal to the initial one, and so has static resonances,
satisfying Eq. (7).
In conclusion, we have derived a new exact condition

that should be satisfied by approximate functionals in
TDDFT in order to accurately capture nonequilibrium
dynamics. Violations of this condition lead to misleading
results in simulating time-resolved spectroscopy, and failure
in resonantly driven processes. We have shown that even
if a functional does not yield accurate excitation frequencies,
if these frequencies even approximately satisfy the exact
condition Eq. (7), then the predicted nonlinear dynamics
could still be accurate. The effect of the spurious time-
dependent resonances of approximate functionals for real-
istic systems could be dampened, due to the large number of
electrons and vibronic couplings, but further investigations
are necessary. Likely for spectroscopy or resonant control
processes, satisfaction of the exact condition is essential, and
our findings explain related observations in the real systems
studied in Refs. [19–22]. The exact condition highlights a
new feature that must be considered in the development of
improved functionals to be able to accurately capture
dynamics far from the ground state.
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