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The Yang-Mills (YM) equation in three spacetime dimensions (3D) can be modified to include a novel
parity-preserving interaction term, with an inverse mass parameter, in addition to a possible topological
mass term. The novelty is that the modified YM equation is not the Euler-Lagrange equation of any
gauge-invariant local action for the YM gauge potential alone. Instead, consistency is achieved in the “third
way” exploited by 3D minimal massive gravity. We relate our results to the “novel Higgs mechanism” for
Chern-Simons gauge theories.
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In three spacetime dimensions (3D) the general gauge-
invariant second-order action for a Yang-Mills (YM) gauge
potential A is

ITMYM½A� ¼
1

2g2

Z
d3x ~Fμ · ~Fμ þ

μ

g2
ICS½A�; ð1Þ

where ~F is the dual Yang-Mills field strength,

~Fμ ¼ εμνρ
�
∂νAρ þ

1

2
Aν × Aρ

�
; ð2Þ

and ICS½A� is the Chern-Simons action

1

2

Z
d3xεμνρ

�
Aμ · ∂νAρ þ

1

3
Aμ · Aν × Aρ

�
: ð3Þ

Here we suppose, for simplicity, that the gauge group is
SUð2Þ and we use vector algebra notation for products of
SUð2Þ triplets; the generalization to other gauge groups is
straightforward.
For μ ¼ 0, the action (1) is the 3D YM action with

coupling constant g. Notice that g2 has dimensions of mass,
so μ=g2 is dimensionless. For nonzero μ the action is that of
topologically massive Yang-Mills (TMYM) theory [1,2],
which propagates an SUð2Þ triplet of spin-1 modes of mass
μ. The field equation is

εμνρDν
~Fρ þ μ ~Fμ ¼ 0; ð4Þ

where Dμ is the covariant derivative, defined such that

DμV ¼ ∂μV þ Aμ × V ð5Þ

for any SUð2Þ-triplet V.

Let us now add a source current J to the right-hand side
of Eq. (4), so that

εμνρDν
~Fρ þ μ ~Fμ ¼ Jμ: ð6Þ

Because of the Bianchi identity Dμ
~Fμ ≡ 0, consistency

requires the source current to be covariantly conserved:

DμJμ ¼ 0: ð7Þ

There are two standard ways to construct a source current
with this property: 1. J ¼ jðϕÞ, the Noether current in a
YM background for lower-spin fields ϕ. In this case,
DμjμðϕÞ ¼ 0 as a consequence of the ϕ equations of
motion. 2. J ¼ δI½A�=δA, where I½A� is some gauge-
invariant, and Lorentz invariant, functional of A. In this
case, DμJμ ≡ 0. This will lead to higher-derivative addi-
tions to the action. There is, however, a third possibility, at
least in 3D. In the spin-2 context, this third way is realized
by minimal massive gravity (MMG) [3–5], which is a
modification of the much-studied topologically massive
gravity [6]. What we show here is that there is a spin-1
analog of the construction of Ref. [3], realized as a
particular modification of either YM theory (if μ ¼ 0) or
TMYM theory (if μ ≠ 0).
Consider the current

Jμ ∝ εμνρ ~Fν × ~Fρ: ð8Þ

This current involves only the gauge field A, through its
field strength. It is not identically conserved,

DμJμ ∝ ðεμνρDμ
~FνÞ × ~Fρ ≢ 0; ð9Þ
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but using the source-free TMYM equation (4), we find
that

DμJμ ∝ μ ~Fμ × ~Fμ ≡ 0: ð10Þ

In other words, the third possibility is that J is conserved as
a consequence of the YM or TMYM equation itself. The
obvious difficulty with this idea is that we change the YM
or TMYM equation as soon as we include J as a source, but
in this case,

DμJμ ∝ Jμ × ~Fμ ∝ εμνρð ~Fμ × ~FνÞ × ~Fρ ≡ 0: ð11Þ

The final identity is a consequence of the Lie algebra Jacobi
identity, so the current J of (8) is conserved as a conse-
quence of the YM or TMYM equation even after this
equation is modified to include J. We have now verified
the consistency of the modified equation

εμνρ
�
Dν

~Fρ þ
1

2m
~Fν × ~Fρ

�
þ μ ~Fμ ¼ 0; ð12Þ

where m is a further mass parameter.
It would appear that the new addition to the YM equation

breaks parity, even when μ ¼ 0, because if the 1-form A is
parity even—as it apparently must be for its field strength
2-form F to have definite parity—then the dual 1-form ~F is
parity odd, implying that its covariant exterior derivative
D ~F is parity odd but also that the 2-form ~F × ~F is parity
even. Nevertheless, Eq. (12) does not break parity when
μ ¼ 0. To see this one must assign the following parity
transformation to the 1-form A:

P∶ A → Aþm−1 ~F: ð13Þ
The parity transformation of F is then

P∶ F → F þ 1

m

�
D ~F þ 1

2m
~F × ~F

�
; ð14Þ

so that ~F is still parity odd, and hence ~F × ~F is still parity
even, when one uses the μ ¼ 0 equation of motion. The
clash with the apparent odd parity of the D ~F term is
resolved by the shift of A, which flips the sign of the ~F × ~F
term in D ~F þ ð1=2mÞ ~F × ~F, so the μ ¼ 0 equation of
motion preserves parity. We shall see later that the new YM
theory can be formulated in a way that makes this feature
manifest.
The 3D YM stress tensor is

Tμν ¼ ~Fμ · ~Fν −
1

2
ημν ~Fρ · ~F

ρ: ð15Þ

This tensor has the property that ∂μTμν ¼ 0 as a conse-
quence of either the YM equation or the TMYM equation.

This remains true even if the equation used is the modified
version of Eq. (12):

∂μTμν ¼ 2 ~Fμ ·D½μ ~Fν� ¼ −2m−1 ~Fμ · ~Fμ × ~Fν

¼ −2m−1 ~Fμ × ~Fμ · ~Fν ≡ 0: ð16Þ

This suggests that the coupling to 3D gravity will be
straightforward.
The same cannot be said of minimal coupling to lower-

spin matter. Consider the equation

εμνρ
�
Dν

~Fρ þ
1

2m
~Fν × ~Fρ

�
þ μ ~Fμ ¼ J μ; ð17Þ

where J is a matter source current. Taking the divergence
of this equation and then using it to simplify the result, we
deduce that

DμJ μ þm−1 ~Fμ × J μ ¼ 0: ð18Þ

Only when m−1 ¼ 0 can we take J to be a Noether current
jðϕÞ, so it is not immediately clear whether there is a
consistent coupling to lower-spin matter. However, given a
covariantly conserved matter current jðϕÞ, and assuming
that m ≠ μ, the consistency condition (18) is satisfied by a
source current of the form

J μ ¼ jμ −
1

ðm − μÞ ε
μνρDνjρ −

1

mðm − μÞ ε
μνρ ~Fν × jρ

þ 1

2mðm − μÞ2 ε
μνρjν × jρ: ð19Þ

Notice that this is quadratic in the covariantly conserved
current j, in close analogy to the source tensor for MMG,
which is quadratic in the matter stress tensor [4]. To verify
that Eq. (19) solves Eq. (18), one needs to use the Lie
algebra Jacobi identity and Eq. (17), which includes the
source.
We shall now consider the particular case of coupling to

an adjoint Brout-Englert-Higgs (BEH) field, i.e., a triplet
scalar ϕ for gauge group SUð2Þ. Assuming that the ϕ field
equation is

½DμDμ þ 2V 0�ϕ ¼ 0; ð20Þ

for potential Vðϕ · ϕÞ, the covariantly conserved current is

jμ ¼ ϕ ×Dμϕ: ð21Þ

In this case,

J μ ¼ ϕ ×Dμϕ − ðm − μÞ−1ϕ × ð ~Fμ × ϕÞ þ � � �
¼ ϕ × f½Aμ − ðm − μÞ−1εμνρ∂νAρ� × ϕg þ � � � ; ð22Þ
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where omitted terms are nonlinear, even when ϕ has a
nonzero vacuum value. Let us now suppose that

ϕ ¼ vþ φ; ð23Þ

where v is a constant SUð2Þ triplet and φ has zero vacuum
value. Then,

v · J μ ¼ 0þ � � � ;
v × J μ ¼ v2½v × Aμ − ðm − μÞ−1εμνρ∂νðv × AρÞ� þ � � � ;

ð24Þ

where omitted terms are nonlinear. We see that the vector
potential gauging the unbroken Uð1Þ gauge group is
unaffected by the BEH field; it continues to propagate a
single spin-1 mode of mass μ. The other two vector
potentials each acquire an explicit mass term (with mass-
squared v2), so they each propagate a pair of spin-1
modes, but these vector potentials also have a topological
mass term, now with mass parameter μþ v2=ðm − μÞ;
notice that this is nonzero even when μ ¼ 0.
In the special case that μ ¼ 0, we have, in addition to

one massive scalar mode, one massless mode propagated
by the Uð1Þ vector potential and four massive modes
propagated by the other two vector potentials; each
propagates two spin-1 modes of opposite (3D) helicities
but with different masses because of the topological mass
(v2=m) induced by the symmetry breaking. In a parity-
preserving theory, massive spin-1 modes must appear in
parity doublets of opposite helicities, so parity is broken
by the coupling to matter for a finite m, even though the
source-free theory with μ ¼ 0 preserves parity. This is a
consequence of the fact that A is not parity inert for finite
m. We shall see later how to modify the construction so
as to preserve parity when μ ¼ 0.
Although there is no local gauge-invariant action for A

alone that yields the source-free equation (12), there is
an action involving auxiliary fields, provided that m ≠ μ.
The Lagrangian density L is given by

g2L ¼ Gμ · ~F
μ −

1

2m
ðm − μÞGμ ·Gμ þ μLCS

þ 1

2m
εμνρ

�
Gμ ·DνGρ þ

1

3m
Gμ ·Gν ×Gρ

�
:

ð25Þ

In the m → ∞ limit, the auxiliary vector field G [which is
also an SUð2Þ triplet] can be trivially eliminated, and we
are then back to the standard TMYM action. More
generally, a variation of both A andG induces the following
variation of L:

g2δL ¼ ðm − μÞ
m

δGμ · ð ~Fμ −GμÞ þ ðδAμ þm−1δGμÞ

·

�
εμνρ

�
DνGρ þ

1

2m
Gν × Gρ

�
þ μ ~Fμ

�
: ð26Þ

From this result we see that the field equations imply both
Gμ ¼ ~Fμ and a further equation that becomes Eq. (12) upon
substitution for G.
We also see from Eq. (26) that it is not the G field

equation alone that allows us to solve for G; that equation
also involves DG and a term quadratic in G. It is a linear
combination of the A andG field equations that allows us to
eliminate G, but for this reason back substitution in the
action is illegitimate. This accords nicely with our earlier
conclusion that, as a consequence of its third way con-
struction, the modified YM equation is not the Euler-
Lagrange equation for any local gauge-invariant action
constructed from A alone.
Observe that only the Gμ ·Gμ term in Eq. (25) involves

the 3D Minkowski metric. From this, and the fact that
G ¼ ~F on shell, it follows that the stress tensor is the usual
one—i.e., Tμν of Eq. (15)—times a factor of ðm − μÞ=m.
We have already verified that ∂μTμν ¼ 0 remains true for a
finite m. We now see that the energy will be positive or
negative according to the sign of mðm − μÞ, and that
positive energy requires

mðm − μÞ > 0: ð27Þ

We may also use Eq. (25) to recover our earlier result
(19) for the source current J . We just add to L the
interaction term −Aμ · jμ. This is gauge invariant provided
that Dμjμ ¼ 0, but (as will become clear shortly) it breaks
parity when m is finite. With this term included, the A
equation becomes

εμνρ
�
DνGρ þ

1

2m
Gν ×Gρ

�
þ μ ~Fμ ¼ j: ð28Þ

Recall now that this equation is needed, in addition to theG
equation, to determineG, soGwill acquire a j dependence.
In fact,

Gμ ¼ ~Fμ þ ðm − μÞ−1j: ð29Þ

If this is now substituted into the A equation and all
j-dependent terms are taken to the right-hand side, the
result of Eq. (19) is recovered. This construction parallels
the construction in Ref. [4] of the source tensor for MMG.
We now show how the parity invariance of the action for

μ ¼ 0 may be made manifest. First, we introduce the new
gauge potential

Ā ¼ Aþm−1G; ð30Þ

PRL 114, 181603 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
8 MAY 2015

181603-3



and we then rewrite the action in terms of A and Ā by using
G ¼ mðĀ − AÞ. The result is

I ¼ m
g2

ICS½Ā� −
ðm − μÞ

g2
ICS½A�

−
1

2g2
mðm − μÞ

Z
d3xðĀ − AÞμ · ðĀ − AÞμ: ð31Þ

When m ¼ μ we may eliminate A, trivially, to obtain a
Chern-Simons (CS) action for Ā, here for gauge group
SUð2Þ, but the equations of motion of this CS action are not
equivalent to the m ¼ μ case of Eq. (12), for which special
case no action is known.
When μ ¼ 0 the action (31) preserves parity if parity is

assumed to exchange A with Ā. Then, although parity flips
the sign of the two CS actions, it also exchanges them, so
their difference is parity even provided their coefficients
sum to zero, which is the case when μ ¼ 0. After elimi-
nation of G to recover the new YM field equation of
Eq. (12), the parity transformation of A becomes
A → Ā ¼ Aþm−1 ~F. It should now be clear how we must
proceed if we wish minimal coupling to lower-spin matter
to preserve parity when μ ¼ 0: we must choose the gauge
potential to be the parity-inert combination

C ¼ 1

2
ðAþ ĀÞ ¼ Aþ 1

2m
G; ð32Þ

and we then add the parity-preserving interaction term

Lint ¼ −Cμ · jμ; ∂μjμ þ Cμ × jμ ¼ 0: ð33Þ

Since parity flips the sign of μ in Eq. (31), we may
assume that μ ≥ 0. In addition, the field redefinition A ↔ Ā
yields the same action but with m replaced by μ −m, so we
may further assume m ≥ μ=2. Thus m ≥ μ=2 ≥ 0 may be
assumed without loss of generality, but we also needm > μ
for positive energy, in which case (excluding m ¼ μ)
we have

m > μ ≥ 0; ð34Þ
which excludes m ¼ 0.
Remarkably, the μ ¼ 0 case of the action (31) has

appeared previously [7], as a model designed to illustrate
a “novel Higgs mechanism” [8]. In this context it arises
from a CS theory for gauge group SUðnÞ × SUðnÞ coupled
to a bifundamental Higgs field that breaks SUðnÞ × SUðnÞ
to the diagonal SUðnÞ subgroup [here SUð2Þ]. This
construction yields an additional singlet massive scalar
field, so once this is included the model becomes a CS
gauge theory minimally coupled to scalar fields, which is
renormalizable as a 3D quantum field theory.
If the source-free Lagrangian density (25) is rewritten in

terms of C rather than A, the result for μ ¼ 0 is particularly
simple:

g2L ¼ Gμ · ~H
μ −

1

2
Gμ ·Gμ þ 1

24m2
εμνρGμ ·Gν × Gρ;

ð35Þ

where

~Hμ ¼ εμνρ
�
∂μCν þ

1

2
Cμ × Cν

�
: ð36Þ

Parity is manifestly preserved since C is parity even and G
is parity odd. This action was also given in Refs. [7,9],
where it was observed that the field equation for G can be
solved recursively, yielding an infinite series expansion in
powers of 1=m2:

Gμ ¼ ~Hμ þ 1

8m2
εμνρ ~Hν × ~Hρ þOðm−4Þ: ð37Þ

We may then back substitute to get an action for C alone.
We may also substitute for G in the C equation to get (for
μ ¼ 0) an equation for C in the form of an infinite series,
but this series is not explicitly defined and will not converge
for all values of the dual field strength ~H. In contrast, our
simple equation (12) for A is, in addition to being more
general, both explicit and defined for all values of ~H; we
should note here that a special case (m ¼ 2μ) has appeared
previously in a related context [10].
The Lagrangian density (35) is a convenient starting

point for the construction of the Hamiltonian formulation
for the μ ¼ 0 case. Performing a time-space split we find
that

g2L ¼ 1

2
G0 ·G0 þ G0 ·

�
Bþ 1

8m2
εijEi × Ej

�

þ Ei · _Ci þ C0 · ð∂iEi þ Ci × EiÞ − 1

2
Ei · Ei;

ð38Þ

where a sum over i ¼ 1; 2 is implicit, and

Ei ¼ εijGj; B ¼ εij
�
∂iCj þ

1

2
Ci × Cj

�
: ð39Þ

The auxiliary field G0 may now be trivially eliminated; this
yields

g2L ¼ Ei · _Ci þ C0 ·DiEi −H; ð40Þ

where the covariant derivative is now defined with gauge
potential C and the Hamiltonian is

H ¼ 1

2
Ei · Ei þ

1

2

����Bþ 1

8m2
εijEi × Ej

����
2

: ð41Þ
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Here, j…j is the SUð2Þ-triplet norm. We see that the
canonical variables fCi; Eig are subject to the Gauss-law
constraint DiEi ¼ 0, as in the standard Hamiltonian for-
mulation of 3D YM theory. The only difference is in the
Hamiltonian, which includes additional terms. Notice,
however, that these are such that the Hamiltonian remains
manifestly positive.
For the generic case of nonzero μ, it is simpler to perform

a time-space split in the action (31). Provided that
mðm − μÞ ≠ 0 we can then trivially eliminate ðA0 − Ā0Þ
to get

L ¼ ðm − μÞ
2g2

εijAi · _Aj −
m
2g2

εijĀi ·
_̄Aj

þ 1

g2
C0 · ½mB̄þ ðm − μÞB� −H; ð42Þ

where

H ¼ 1

2g2

�
mðm − μÞðAi − ĀiÞ · ðAi − ĀiÞ

þ 1

mðm − μÞ jmB̄ − ðm − μÞBj2
�
: ð43Þ

Here, B is defined as in Eq. (39), and B̄ is the same but with
Ā instead of A. The field C0 is again the time component of
the parity-even gauge potential C, and it is again a
Lagrange multiplier for an SUð2Þ triplet of first-class
constraints, which generate SUð2Þ gauge transformations
of the canonical variables. Notice that the Hamiltonian is
positive only ifmðm − μÞ > 0, as expected from our earlier
discussion of the stress tensor.
We conclude with a comment on the relation of our

construction to M-theory. We defer to Ref. [9] for a review
of the relevance to multi-M2-brane dynamics of the action
(31) for μ ¼ 0. Its relevance for μ ≠ 0 follows from the
work of Ref. [11], where the sum of the CS levels was
identified with the Romans mass of massive IIA super-
gravity [12]. In our construction, this sum is proportional to
the mass μ of our modified TMYM equation. This is in
accord with the fact that consistency of the topologically
massive super-D2-brane in a supergravity background
implies the field equations of massive IIA supergravity [13].
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