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We discuss the combined effect of magnetic fields and geometry in interacting fermionic systems. At
leading order in the heat-kernel expansion, the infrared singularity (that in flat space leads to the magnetic
catalysis) is regulated by the chiral gap effect, and the catalysis is deactivated by the effect of the scalar
curvature. We discover that an infrared singularity is found in higher-order terms that mix the magnetic
field with curvature, and these lead to a novel form of geometrically induced magnetic catalysis.
The dynamical mass squared is then modified not only due to the chiral gap effect by an amount
proportional to the curvature, but also by a magnetic shift ∝ ð4 −DÞeB, where D represents the number of
space-time dimensions. We argue that D ¼ 4 is a critical dimension across which the behavior of the
magnetic shift changes qualitatively.
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The phenomenon of spontaneous symmetry breaking,
originally inspired by the BCS theory of superconductiv-
ity, was initially established to account for the masses of
nucleons and light pions [1]. In modern terminology, we
say that chiral symmetry, i.e., a symmetry between left-
and right-handed sectors of massless fermions, is sponta-
neously broken by a nonvanishing chiral condensate
hψ̄ψi ≠ 0. When this happens, a dynamical mass for
the fermions, denoted here as M, is generated by such
a condensation phenomenon. Since the early days, the-
orists have been trying to develop ways to compute the
effective potential as a function of the chiral condensate in
order to be able to unfold the nature of symmetry breaking
and of its associated phase transitions in a wide variety
of contexts.
The chiral condensate plays an essential role in the

characterization of the phase structure of quark matter in
extreme conditions, for instance, at high temperature or
density, as well as in the presence of external (magnetic,
gravitational, etc.) fields (see Refs. [2–4] for reviews).
However, theoretical applications are not limited to quark
matter, and concepts and methods spread over a wide range
of subjects. A well-known example in condensed matter
physics, where the concept of the chiral condensates or the
Dirac and Haldane masses plays a central role, is in the case
of graphene in a strong magnetic field [5], which exhibits an
anomalous quantum Hall effect [6]. These phenomena (and
the role that the chiral condensate plays) can be understood
intuitively from the following argument: The chiral con-
densate consists of a left-handed (or right-handed) fermion
and a right-handed (or left-handed) antifermion with zero net
momenta, so the momentum directions should be opposite
and the spin directions antiparallel to each other. Since a
strong magnetic field tends to align the spins of the fermion

and antifermion, it enhances the chance for dynamical
breaking of chiral symmetry to occur.
Symmetry breaking is often modeled by an interacting

low-energy effective theory, expressed in terms of fermion
degrees of freedom, like in the BCS theory. If we denote the
coupling constant that characterizes the strength of the
interaction with λ, then spontaneous symmetry breaking
usually occurs when the coupling constant exceeds some
critical value λc, i.e., λ > λc. When the presence of an
external magnetic field B triggers the condition λc → 0, we
say that “magnetic catalysis” is realized. This phenomenon,
originally discovered in Refs. [7,8] (see Ref. [3] for
reviews), is caused by an infrared (IR) singular contribution
to the effective potential, strengthened by the effect of the
dimensional reduction due to the magnetic field. In the
following, the term magnetic catalysis will always be used
in this sense (and not in reference to the increasing behavior
of hψ̄ψi as a function of increasing B, as it is sometimes
found in the literature [9]).
The magnetic catalysis is naturally lost at finite temper-

ature, since there are noMatsubara zero modes and therefore
no IR singularity, explaining the presence of a finite-T phase
transition even when B ≠ 0 [10]. Interestingly, a similar
mechanism works when the spatial geometry is curved. Such
similarities and some potential implications have recently
been discussed in the context of the “chiral gap effect,”
leading to an intuitive understanding of the fate of chiral
symmetry in the presence of nonzero curvature [11]. The
chiral gap effect is a robust consequence arising from the
quasinonperturbative (R-resummed) form of the propagator
in curved space originally formulated in Ref. [12] (see
Ref. [13] for a discussion in relation to strongly interacting
fermions and Refs. [14,15] for additional discussion on heat-
kernel resummations). The situation we wish to consider in
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the present Letter concerns the combined effect of curvature
and magnetic fields, and the question we intend to address is
whether the magnetic catalysis can be deactivated in the
presence of curvature. As we will show, something novel
happens due to the interplay of magnetic fields and geom-
etry. This is an intriguing question, leading to profound
consequences for many physical systems. For instance, it is
of relevance to astrophysical systems (e.g., neutron stars)
that involve not only gravity but also strong magnetic fields.
In condensed matter physics, it is also possible to induce a
curvature locally by the insertion of defects in the lattice of
strongly coupled materials and use the combined effects
of geometry and external magnetic fields to probe the nature
of chiral symmetry. Motivated by these applications, in the
following we shall focus our attention to the physically
relevant case of eB ≫ R, where R indicates the Ricci scalar.
Curvature-induced chiral gap and magnetic inhibi-

tion.—It is an immediate consequence of the chiral gap
effect that the IR singularity responsible for the magnetic
catalysis disappears unless we take account of higher-order
terms. Since it will turn out to be quite instructive, we shall
explicitly check this. The partially resummed heat-kernel
expansion reads

Tre−tD ¼ 1

ð4πtÞD=2 e
−M2

Rt
eBt

sinhðjeBjtÞ e
ðit=2ÞeFμνσ

μν
X∞
k¼0

aktk;

ð1Þ

where D represents the Dirac operator.
The above expression is obtained by means of a double

resummation over the scalar curvature and of the purely
magnetic contributions. The first one gives rise to the first
exponential factor, while the second one resums the purely
magnetic contributions. The first kind of resummation has
been derived in Ref. [12], while the second one has been
discussed, for example, in Ref. [16] (see also Chap. 5 of
Ref. [14] for a nice derivation). The shift in the mass due to
the scalar curvature resummation, i.e., M2

R ≡M2 þ R=12,
represents the essence of the curvature-induced chiral gap.
We can describe a qualitative mechanism for this effect by
directly looking at the spectra of the Dirac operator. For
concreteness, let us consider the case of D-dimensional de
Sitter space SD for which the eigenvalues of the free Dirac
operator are [17]

λð�Þ
n ¼ m� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

DðD − 1Þ

s �
nþD

2

�
: ð2Þ

Similarly to the case of a box with periodic boundary
conditions, the spectra, labeled by an integer index n ≥ 1,
become discrete in the present case. For sufficiently largeD
and taking into account the degeneracy for each n, we can
recover a continuum spectra (labeled by continuum
momenta), except for the presence of a gap proportional

to
ffiffiffiffi
R

p
. This gap prevents the Dirac eigenvalues from

accumulating around the zero mode, disfavoring the for-
mation of a nonvanishing chiral condensate when R > 0, as
it follows straightforwardly from the Banks-Casher rela-
tion. In fact, Eq. (2) allows for a deeper understanding of
such a curvature-induced chiral gap: If we take the product

λðþÞ
n λð−Þn , then the leading effect of R naively looks like a

shift in m2 by R, but in the original eigenvalues λð�Þ
n of the

first-order Dirac operator it is obvious that this R-induced
shift is not on the real axis, but it occurs along the
imaginary axis, which explains how such a curvature-
generated mass gap can be consistent with chiral symmetry.
Picking up the first contribution with a0 ¼ 1 from

Eq. (1), we can express the one-loop effective potential as

VR-resum½M� ¼ M2

2λD
þ κDðeBÞ

Z
∞

1=Λ2

dtt−D=2e−M
2
Rt cothðeBtÞ;

ð3Þ

where we have used proper-time regularization. In the
above expression, we have denoted the coupling constant
in D dimensions with λD and defined κD≡
2⌊ðDþ1Þ=2⌋−1=ð4πÞD=2. In obtaining Eq. (3), we could have
adopted any other regularization scheme (ζ function, Pauli-
Villars, etc.) as long as gauge invariance is preserved.
Different prescriptions would not change the IR singular
structure. In the limit of eB ≫ Λ2, cothðeBtÞ ≈ 1, and, for
R ¼ 0, we can approximate the potential as

Vcatalysis½M� ≈ M2

2λ4
þ κ4ðeBÞM2

�
−1þ γE þ ln

M2

Λ2

�
ð4Þ

for D ¼ 4. We may then define a “renormalized” coupling
as 1=ð2λ04Þ≡ 1=ð2λ4Þ þ γEκ4ðeBÞ and observe that the
dynamical mass always takes a finite value: M2 ¼
Λ2 exp½−1=2κ4λ04ðeBÞ�. This is how magnetic catalysis
works.
It should be noted that the IR singularity possibly

remains if R < 0 (see Ref. [18] for the analysis with
R < 0). Then it is natural to expect that effects of negative
curvature may be compensated by those of temperature
leading to a restoration of the catalysis. For R > 0,
however, M2

R never reaches zero and lnðM2
R=Λ

2Þ is no
longer IR singular, which could be regarded as a mecha-
nism of “magnetic inhibition” induced geometrically
(having an origin totally different from the inhibition at
finite temperature [19]).
Magnetic catalysis from higher-order terms.—The

above is not the whole story. As done in the derivation
of the chiral gap effect, below we shall assume a geomet-
rical structure such that we can neglect Ricci and Riemann
tensors as compared to the Ricci scalar: jRμνj ≪ jRj and
jRμνρσj ≪ jRj, as happens, for instance, for maximally
symmetric geometries with large D. However, in the
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present case, since higher-order contributions coming from
ak with k ≥ 2 involve terms that mix the magnetic field
with curvature, these cannot be discarded but may domi-
nate over the purely gravitational tensorial combinations.
Before proceeding with detailed calculations including
higher-order terms, it is useful to obtain a parametric form
for the chiral condensate or the dynamical mass (correc-
tion) by using dimensional analysis. Let us suppose that
higher-order terms give rise to an IR-singular correction
δM2 to the dynamical mass. Then ðeBÞ2R would be the
most natural combination from which the correct mass
dimensionality arises. This is because ak should vanish
(except for subleading contributions involving Rμν and
Rμνρσ) when we take either B ¼ 0 or R ¼ 0. Since B is
generated from a Lorentz-invariant contraction of Fμν,
the lowest order should be ðeBÞ2. Finally, multiplying
by the four-fermion coupling constant λD that has a mass
dimension, we conclude that δM2 should be a function
of λDðeBÞ2R.
In D-dimensional space-time, the mass dimension of λD

is ½λD� ¼ 2 −D, and so ½λDðeBÞ2R� ¼ 8 −D. Thus, dimen-
sional analysis allows us to write

δM2 ∼ ½λDðeBÞ2R�2=ð8−DÞ: ð5Þ

The above expression indicates that D ¼ 8 is a critical
dimension. For the D ¼ 8 case, λ8ðeBÞ2R becomes dimen-
sionless, and the parametric dependence of δM2 should
become logarithmic, i.e., δM2 ∼ Λ2 exp½−C=λ8ðeBÞ2R�,
which reminds us of the standard magnetic catalysis.
Let us now look into the concrete calculations of the

chiral condensate and of the effective potential. Since we
are working in the regimewhere eB ≫ R, in the heat-kernel
expansion we need to resum all the terms of the form
ðeBÞ2RðeBtÞk with k ≥ 2. Here, we adopt the same strategy
as when performing the R resummation that leads to an
exponential dependence. Namely, we postulate a resummed
expansion based on the following reorganisation of the
various terms:

X∞
k¼0

aktk ¼ 1þ R
X∞
k¼1

αkðeBÞk−1tkeβkeBt; ð6Þ

where αk and βk are dimensionless coefficients that can
be computed explicitly from the heat-kernel coefficients.
The above expression can be obtained by direct construc-
tion of the corrections to the zeta function the higher-order
mixed terms induce (the first few coefficients can be
explicitly obtained from those reported in Ref. [12] by
keeping only the terms that mix the magnetic field with
curvature), by ordering according to their mass dimension-
ality and exponentiating.
We explicitly obtained a2 and a3 (a1 ¼ 0 from an

obvious reason of dimensionality) and identified the

coefficients α2 and β2 (and α1 ¼ 0 corresponding to
a1 ¼ 0). Similar computations of heat-kernel coefficients
are reported in Refs. [12,16]. After lengthy calculations, we
obtained the effective potential that reads

VB-resum½M� ¼ M2

2λD
þ κDðeBÞ

Z
∞

1=Λ2

dtt−D=2e−M
2
Rt

þ κDðeBÞ2R
6DðD − 1Þ

Z
∞

1=Λ2

dtt−D=2þ2e−M
2
Bt: ð7Þ

Since we are interested in whether the magnetic catalysis
occurs in the presence of curvature when eB is the largest
scale in the system, we have approximated cothðeBtÞ ≈ 1

in the above expression. We defined M2
B ≡M2

R þ
½2ð4 −DÞ=15�eB, which represents a B-induced correction
to the chiral gap effect. This expression implies that the
curvature-induced chiral gap R=12 could be compensated
by the effect of the magnetic field forD − 4 > 0 if eB ≫ R.
The last term in Eq. (7) represents the correction to the

potential coming from higher-order terms mixing curvature
tensors with magnetic field and that can be obtained, at the
price of a long calculation, by starting from the general
expression of the zeta function and from the explicit
knowledge of the heat-kernel coefficients.
The term that carries the potential IR singularity is the

third term in the effective potential (7). This can be
explicitly evaluated, leading to

Z
∞

1=Λ2

dtt−D=2þ2e−M
2
Bt ¼ MD−6

B Γð3 −D=2;M2
B=Λ

2Þ; ð8Þ

from which it is easy to estimate the parametric dependence
of the chiral condensate, which turns out to be consistent
with Eq. (5). In what follows below let us look at Eq. (5) for
specific choices of D.
(D ¼ 3).—This is probably the most relevant to systems

in condensed matter physics. We should remark here that,
while the condition of largeD allows for a simple hierarchy
between curvature invariants, it is not a necessary condition
for the validity of the above statements. In this case,
interestingly, the magnetic shift and the curvature-induced
chiral gap accumulate. Because the correction (8) is infra-
red singular as∝ 1=M3

B, it would be dominant nearMB ∼ 0,
and we can easily solve the gap equation to find

M2
B ¼ M2 þ R

12
þ 2

15
eB ¼

� ffiffiffi
π

p
κ3λ3ðeBÞ2R

24

�
2=5

; ð9Þ

which is of course consistent with Eq. (5). Under the
condition of eB ≫ R, thus, the magnetic shift term ∼eB
would oversaturate M2

B. This means that there is no stable
solution near M2

B ∼ 0 with M2 > 0, and M2 is actually
determined by the balance with the second term in the
potential (7) rather than the third term. In summary, for
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D ¼ 3, the chiral gap effect overwhelms the magnetic
catalysis, and higher-order terms would not override this
situation.
(D ¼ 4).—Since there is no B-induced correction to the

mass squared, D ¼ 4 is an exceptional (and also realistic in
relativistic systems) case. It is obvious from Eq. (8) that a
singular term ∝ 1=M2

B appears in the effective potential.
Then we can easily locate the minimum of the effective
potential at

M2
B ¼ M2 þ R

12
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ4κ4ðeBÞ2R

36

r
: ð10Þ

We note that M2 is nonvanishing if ðeBÞ2 > R=ð4λ4κ4Þ,
which means that the magnetic catalysis is recovered in this
case for D ¼ 4. Strictly speaking, for an arbitrary value of
B, magnetic catalysis is not necessarily guaranteed, since
this inequality also determines a critical λ4. We should,
however, note that we postulated eB ≫ R in our analysis;
however, it is obvious that the term R=12 turns out to be
subdominant.
It is quite natural that M2 is proportional to the density of

states of the Landau levels, ∼eB, although a rather uncon-
ventional combination of λ4R appears in addition. Because
λ4R is dimensionless in D ¼ 4, the dependence on λ4R
could have any functional form, in principle, as long as it
vanishes for R → 0. The square root dependence as seen in
Eq. (5) is very interesting, because the right-hand side
∼eB

ffiffiffiffiffiffiffiffi
λ4R

p
could dominate over the chiral gap effect con-

tribution ∼R not only for eB ≫ R but also for R ≪ λ−14
(and B ≠ 0). The latter is usually the case (and λ−1=24 should
be interpreted as a typical scale in theory, e.g., ∼ΛQCD in the
case of quarks).
(D ¼ 5).—The IR singularity is weakened as ∼1=MB in

Eq. (8), but it is still sufficient to lead to a chiral condensate.
In this case we find thatM2 is affected by a B-induced term:

M2
B ¼ M2 þ R

12
−
2eB
15

¼
� ffiffiffi

π
p

λ5κ5ðeBÞ2R
120

�
2=3

: ð11Þ

Interpreting this expression requires care, particularly due
to the presence of the third term ∼eB in the left-hand side.
Equation (11) may imply that M2 ∼ eB (regardless of λ5)
even in the limit of vanishing R. Going back to Eq. (7),
however, the third term in the effective potential is
vanishing for R ¼ 0, and so M2 cannot have any such
correction. Thus, the behavior of the effective potential
itself smoothly changes from R ¼ 0 to R ≠ 0, but the
position of the minimum discontinuously jumps once B is
switched on. This is not so unusual if the potential shape is
shallow enough. In principle, such a discontinuous behav-
ior at R ¼ 0 would be made milder by further resummation
of IR singular terms around M2

B ∼ 0.

We should emphasise that this “geometrically induced
magnetic catalysis” is absent in flat space and can occur
even in the case of a weakly curved geometry. For this
reason, its effect should be more easily observable than the
chiral gap effect itself. In fact, even though the correction to
the potential height is negligibly small due to suppression
by R, a sizable shift in M2 is possible. We did not include
the IR-safe terms in the above discussion, since they,
obviously, do not change our qualitative conclusion.
(D ¼ 8).—Qualitatively, the cases D ¼ 5, 6, and 7 are

similar. So, let us consider the next nontrivial case, D ¼ 8.
As we have already mentioned, λ8ðeBÞ2R is dimensionless
in this case, and explicit calculations lead to

M2
B ¼ M2 þ R

12
−
16eB
15

¼ Λ2 exp

�
−

168

λ08κ8ðeBÞ2R
�
; ð12Þ

where, for notational convenience, we have defined λ0−18 ≡
λ−18 þ ð−1þ γEÞκ8ðeBÞ2R=168.
Although this nonanalytic form in terms of the coupling

λ08 is peculiar, physical consequences are dominated by a
shift of −16eB=15 in M2

B that induces M2 ∼ eB as long as
M2

B is non-negative. The same argument can be applied to
larger D. Hence, regarding the behavior of M2, we can
generalize our study for any D > 4 and conclude that the
essential feature of the geometrically induced magnetic
catalysis should be common if D is larger than the critical
dimension D ¼ 4.
Conclusions and outlook.—In this Letter, we have

investigated the two competing effects of curvature and
magnetic field with the intent to clarify the interplay
between the chiral gap effect and the magnetic catalysis.
In conformity with the chiral gap effect, quasinonpertur-
bative contributions (due to R resummation in the heat
kernel) induce a curvature correction to the mass and
regulate, as it may be intuitively expected, the infrared
singularity deactivating the strict magnetic catalysis at this
level of approximation.
However, we have discovered (using both dimensional

analysis and by means of explicit evaluation of the effective
potential) thatD ¼ 4 is a critical dimension. Above D ¼ 4,
next-to-leading-order corrections in the heat-kernel expan-
sion become relevant, restoring the magnetic catalysis in a
novel, geometrically induced fashion. We have also seen
that below D ¼ 4 these corrections become irrelevant for
the magnetic catalysis, and the curvature and magnetic field
cooperate. More precisely, for D > 4, the infrared singu-
larity induces a dynamical mass of the order of eB, though
the singular contribution to the effective potential is
suppressed by small R. In the critical D ¼ 4 case, the
dynamical mass squared is proportional to eB

ffiffiffiffiffiffiffiffi
λ4R

p
, where

λ4 is the four-Fermion coupling constant and the combi-
nation λ4R is dimensionless.
Possible applications of the geometrically induced mag-

netic catalysis discussed here are of relevance for a wide
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variety of physical setups. Perhaps the most natural
environment is that of neutron stars where both a curvature
and a magnetic field (that could be as strong as 1012 T [20])
could lead to a realization of what we have discussed here.
Micro black holes in the early Universe or in high-energy
particle collisions accelerator experiment could also be
an interesting playground for the chiral gap effect and the
geometrically induced magnetic catalysis. In an ultrarela-
tivistic nucleus-nucleus collision, a pulsed and strong
magnetic field is generated, and the space-time geometry
is nontrivial due to expansion and flowing fluids (that may
cause horizon formation or an acoustic metric; see
Refs. [21,22] for related discussions). Finally, although
for lower dimensionality the magnetic field and the
curvature cooperate (rather than compete), the present
discussion may be of relevance in the context of strongly
coupled layered materials, where curvature can be gen-
erated locally by the insertion of defects.
In order to be able to discuss the problem in a model-

independent way, in this work we have focused only on the
strict characterization of the magnetic catalysis. It would be
intriguing to use chiral perturbation theory, that is, a
theoretical approach complementary to the fermionic
description adopted here. Also, studying the behavior of
the chiral condensate as a function of various external
parameters including the temperature effect would be
interesting. These remain as future problems.
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