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The main roadblock on the way to practical realization of magnetoelectric devices is the lack of
multiferroics with strong magnetoelectric coupling. We propose an unusual route to dramatically enhance
this coupling through a thermally mediated mechanism. Such a thermally mediated magnetoelectric effect
is quantified by an isentropic rather than isothermal magnetoelectric response and is computed here from
first principles. A robust enhancement of the magnetoelectric coupling is predicted for both naturally
occurring and heterostructured materials.
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Magnetoelectric multiferroics are materials that exhibit
both electric and magnetic orderings at the same time. They
have attracted unprecedented attention in recent years owing
to their potential to exhibit magnetoelectric coupling [1–7].
Such coupling could open theway to innovative applications
such as four-state logic in a single device, magnetoelectric
random access memories, and electrically controlled
exchange bias applications [8]. Most of these applications,
however, require strong coupling between electric and
magnetic degrees of freedom. As a result, the search was
directed toward discovery of multiferroics with enhanced
magnetoelectric coupling. While such a search resulted in a
plethora of scientific breakthroughs [7,9,10], thediscoveryof
multiferroics with technologically significant magnetoelec-
tric couplings eludes researchers.Once againweare forced to
appreciate the importance of the fundamental science that
“contraindicates” ferroelectricity and ferromagnetism [11].
At the same time, one may begin to wonder if we could
“trick” nature into enhancing the magnetoelectric coupling
through indirect mechanisms. One example is the strain-
mediated magnetoelectric coupling in heterostructures made
of ferroelectric and ferromagnetic materials [12]. Indeed,
such materials exhibit the largest values of magnetoelectric
coupling to date [13]. At the same time, such a mechanism
relies on an excellent lattice match between rather dissimilar
materials that could be challenging to achieve in practice. In
this Letter we propose an unusual route to a robust enhance-
ment of magnetoelectric coupling via a thermally mediated
mechanism. Such a mechanism offers the advantages of
universality as it applies to both intrinsic (naturally occur-
ring) and extrinsic (heterostructured) multiferroics, and of
flexibility in coupling engineering.
The linear magnetoelectric coupling is usually defined

as a tensor with components δαβ ¼ ∂Mα=∂Eβ, where Mα

and Eβ are the αth component of the magnetization and
βth component of the electric field, respectively [14].
Alternatively, it could be defined as δαβ ¼ ∂Pα=∂Bβ, where

P and B are the polarization and the magnetic induction,
respectively. It is often implicitly assumed that the derivatives
are taken under constant temperature, making δαβ an iso-
thermal coupling. To achieve temperature mediated mag-
netoelectric coupling, we allow the temperature T to vary.
Using temperature, electric, and magnetic fields as indepen-
dent thermodynamical variables, while entropy, polarization,
and magnetization as their dependent counterparts, we
write the infinitesimal change in magnetization as dMα¼
ð∂Mα=∂TÞEBdTþð∂Mα=∂EβÞTBdEβþð∂Mα=∂BγÞTEdBγ .
Let us now apply an electric field slowly and under adiabatic
conditions to ensure that the total entropy S is conserved. The
associated linear isentropic magnetoelectric effect is�∂Mα

∂Eβ

�
SB

¼
�∂Mα

∂T
�

EB

� ∂T
∂Eβ

�
SB

þ
�∂Mα

∂Eβ

�
TB
: ð1Þ

Here, the last term is the usual isothermal linear magneto-
electric coupling. Note that for the remainder of the Letter
we will implicitly assume that all the couplings are linear
unless otherwise stated. From Eq. (1) we observe that
the difference between the isentropic and isothermal mag-
netoelectric coupling is proportional to the pyromagnetic
coefficient, ð∂M=∂TÞEB, and the electrocaloric effect,
ð∂T=∂EÞSB. First of all, we notice that the equation predicts
that the isentropic magnetoelectric coupling can occur even in
materials with a negligible isothermal one. Indeed, unlike its
isothermal counterpart, the isentropic coupling is temperature
mediated and therefore does not require strong intrinsic
coupling between magnetic and electric order parameters.
Here we recall that the small values of magnetoelectric
coupling remain the main roadblock on the way to practical
applications of magnetoelectric multiferroics. Second, thanks
to its temperature mediated nature, the isentropic coupling
can be enhanced or otherwise engineered in a variety of ways.
For example, typically both pyromagnetic and electrocaloric
effects in multiferroics are maximized around transition
temperatures. So the isentropic magnetoelectric effect can
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be manipulated by tuning transition temperatures through
nanostructuring, strain engineering, and others. Another
possible way to enhance the effect is through heterostructur-
ing materials with good pyromagnetic and electrocaloric
properties. Interestingly, heterostructuring has proven to be
a potent way to enhance the isothermal magnetoelectric
coupling through a strain-mediated mechanism [13]. At the
same time, the strain-mediated mechanism relies on a good
lattice match that may be challenging to achieve. The
isentropic coupling, on the other hand, does not have such
a requirement as it relies on thermal equilibrium between the
components of the heterostructure.
In materials with nonvanishing isothermal magnetoelectric

coupling, the isentropic coupling could be further enhanced
provided that both terms on the right-hand side of Eq. (1)
are of the same sign. This requirement could always be
met in a polar phase of ferroelectrics where the sign of
ð∂T=∂EÞSB is controlled by the direction of the electric field
[15]. By analyzing Eq. (1) we find that the isentropic
magnetoelectric coupling exceeds its isothermal counterpart
if ð∂Mα=∂TÞEBð∂T=∂EβÞTB > −2ð∂Mα=∂EβÞTB.
Next we explore the isentropic electromagnetic

effect ð∂Pα=∂BβÞSE. Note that unlike the case of an
isothermal coupling for the isentropic one ð∂Pα=∂BβÞSE ≠
ð∂Mα=∂EβÞSB. Here we start with dPα ¼ ð∂Pα=∂TÞEB
dT þ ð∂Pα=∂EγÞTBdEγ þ ð∂Pα=∂BβÞTEdBβ, where P is
the electric polarization. A slow application of magnetic
induction under adiabatic conditions will result in an
isentropic electromagnetic coupling

�∂Pα
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�
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¼
�∂Pα
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�

EB
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�
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�
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The latter relationship is symmetric to Eq. (1) if we
interchange polarization with magnetization and the elec-
tric field with the magnetic induction. This symmetry
suggests that the previous analysis is also valid for the
isentropic electromagnetic coupling if the proper fields
interchange is applied.
To demonstrate the aforementioned enhancement of

magnetoelectric and electromagnetic couplings under
adiabatic conditions we turn to the room temperature
magnetoelectric multiferroic BiFeO3. BiFeO3 is an anti-
ferromagnet. Therefore, instead of looking for coupling
between the magnetization and electric field we will
look into the coupling between the antiferromagnetic
vector and the electric field. Such coupling is important
for the electrically controlled exchange bias [3]. It can
be derived similarly to Eq. (1) where the magnetization
is replaced with the antiferromagnetic vector, A. Our
approach is to use first-principles-based simulations to
compute ð∂Aα=∂TÞEB, ð∂T=∂EβÞSB, ð∂Aα=∂EβÞTB, and
ð∂Pα=∂TÞEB, ð∂T=∂BβÞSE, ð∂Pα=∂BβÞTE, which enter
modified [16] Eq. (1) and (2).

The bulk sample of BiFeO3 is simulated by a 12×
12×12 supercell with periodic boundary conditions
applied along all three directions. Every tenth simulation
is cross checked by using a 20 × 20 × 20 supercell. The
total energy of this supercell is given by the effective
Hamiltonian [17,18] with the parameters derived from
density functional theory calculations [19]. The degrees
of freedom for the Hamiltonian include the local mode,
which is proportional to the dipole moment in the unit
cell, magnetic dipole moment, and local strain variables.
In this work the Hamiltonian is extended to incorporate
the magnetic degrees of freedom similarly to the
approach of Ref. [20]. More precisely, the total energy
of the Hamiltonian includes the magnetic exchange
interaction, the interaction between magnetic moments
and elastic deformations, and the on-site interactions
between magnetic moments and local modes. The latter
one originates from the spin-orbit interaction and is
quadratic in both local mode and magnetic moment.
This Hamiltonian reproduces a variety of structural,
thermodynamical, and dynamical properties of BiFeO3

which include the polarization, antiferromagnetic order
parameter, Curie and Néel temperatures [21], tetragon-
ality, and some others. To compute the zero-field iso-
thermal coupling ð∂Pα=∂BβÞTE we use linear response
theory [23] in the framework of the Metropolis
Monte Carlo algorithm [24]. We find this coupling to
be of the order of 10−7, which is smaller than the error
bar of our computations. The only exceptions are the
temperatures around the Curie point, where we find
ð∂Pα=∂BαÞTE up to 5.3 × 10−6 � 2.2 × 10−6 relative to
vacuum. This is in line with the current literature [7].
ð∂Aα=∂EβÞTB is taken to be equal to zero since we
assume that the electric field does not couple to the
antiferromagnetic vector directly.
Furthermore, the zero-field ð∂Pα=∂TÞEB and

ð∂Aα=∂TÞEB are computed from the temperature evo-
lution of polarization and antiferromagnetic vectors, res-
pectively. They are reported in Figs. 1(a) and 1(b). We
notice that jð∂Pα=∂TÞEBj and jð∂Aα=∂TÞEBj are maxi-
mized near the Curie and Néel temperatures, respec-
tively. To obtain ð∂T=∂EβÞSB and ð∂T=∂BβÞSE, we
compute the electrocaloric and magnetocaloric effects
using isentropic Monte Carlo algorithm [15]. In such
simulations the temperature is calculated during a slow
adiabatic application of electric or magnetic field.
Technically, the electric field is applied at an extremely
low rate of 50 V=m per one Monte Carlo sweep to
ensure reversibility. Similarly, the rate of application for
the magnetic induction is 0.5 mT per Monte Carlo
sweep. The linear region in the field evolution of the
temperature is used to compute the derivatives. They are
given in Figs. 1(c) and 1(d). Once again we find that
these linear effects reach their extremums near the Curie
and Néel temperatures. Interestingly, the magnetocaloric
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effect [see Fig. 1(c)] changes its sign from positive to
negative in the vicinity of the Néel temperature. The
effect, however, is rather small due to very small
magnetic susceptibility of antiferromagnetic BiFeO3.
To compute the isentropic couplings ð∂Pα=∂BαÞSE

and ð∂Aα=∂EαÞSB the derivatives shown in Fig. 1 are
used in the modified Eq. (1) and Eq. (2), where we neglect
the contribution from the isothermal couplings (the last
term). The computational data for ð∂Pα=∂BαÞSE and
ð∂Aα=∂EαÞSB are given in Fig. 2 in dimensionless units.
Note that in the figure we report the diagonal component of
the magnetoelectric coupling tensor.

Figure 2 demonstrates that the isentropic couplings
are nonzero even in materials with vanishing isothermal
response. Figure 2(a) reports the computational data for
the isentropic electromagnetic coupling. Generally, we do
not expect this coupling to be large in BiFeO3

owing to its antiferromagnetic nature and associated
ultralow magnetocaloric effect. Nevertheless, we find
that the isentropic ð∂Pα=∂BβÞSE exceeds the isothermal
ð∂Pα=∂BβÞTE by orders of magnitude. One can further
dramatically enhance the isentropic coupling by hetero-
structuring BiFeO3 with good magnetocaloric materials. If
we consider a heterostructure of BiFeO3 with one of the
best magnetocaloric materials—single crystal Gd [25]—we
find that ð∂Pα=∂BβÞSE could be further increased by 3
orders of magnitude. For instance, the adiabatic application
of 2 T magnetic field to Gd single crystal at room
temperature causes the temperature to increase by 6.3 K
[25]. Equation (2) predicts that the associated decrease
in polarization can reach up to 1.85 mC=m2. By further
inspection of Fig. 2(a) we note that in BiFeO3

ð∂Pα=∂BβÞSE could be both positive and negative and
reaches extreme values near the Curie and Néel temper-
atures. Interestingly, we also find that in BiFeO3

ð∂Aα=∂EαÞEB exceeds significantly ð∂Pα=∂BαÞSE.
We next verify the predictions obtained from Eqs. (1)

and (2) in direct computations. Figure 2 indicates that the
extremal response is expected around temperatures 880
and 1200 K. To that end we compute the change in
polarization and antiferromagnetic vector under slow
adiabatic application of magnetic induction and electric
field, respectively, around these temperatures. Figure 3
shows the dependence of the polarization on magnetic
induction at T¼840K [panel (a)], T¼1000K [panel (b)],
and the dependence of the antiferromagnetic vector on
the electric filed at T ¼ 790 K [panel (c)]. Note that due
to the relatively low ratio of magnetoelectric effect to
thermal noise we choose to report the data for very high
magnetic fields for the purpose of demonstration. Since
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FIG. 1 (color online). Temperature dependence of the pyro-
electric coefficient (a), the coupling coefficient between the
antiferromagnetic order parameter and temperature (b), the linear
magnetocaloric effect (c), and the linear electrocaloric effect (d).
Solid and dot-dashed vertical lines give the computational Néel
and Curie temperature, respectively.
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FIG. 2 (color online). Temperature dependence of the isentropic electromagnetic coefficient δSB ¼ ð∂Pα=∂BαÞSE
ffiffiffiffiffiffiffiffiffiffiffi
μ0=ε0

p
in units

relative to vacuum (a), and “antiferromagnetoelectric” response χSB ¼ ð∂Mα=∂EαÞSB
ffiffiffiffiffiffiffiffiffiffiffi
μ0=ε0

p
in units relative to vacuum (b).

PRL 114, 177205 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
1 MAY 2015

177205-3



Fig. 3 shows that for the chosen temperatures the
response of the polarization to the magnetic induction
is linear, the results are easily scaled down to fields of
practical importance. The figure reveals the existence
of isentropic electromagnetic coupling. The effect is in
both qualitative and quantitative agreement with the
predictions from Eqs. (1) and (2) given by the solid lines.
Our simulations demonstrate that in multiferroics the

isentropic and isothermal electromagnetic couplings can
be orders of magnitude different. At the same time, in
experiments the processes are typically neither com-
pletely isentropic (adiabatic) nor isothermal. As a result,
depending on the experimental conditions, the observed
electromagnetic response is likely to have both iso-
thermal and isentropic contributions. Time could be an
important factor in determining these contributions.
For example, in experiments that are carried out on a
time scale shorter than the one required to reach thermal
equilibrium with the environment, the isentropic
response is likely to dominate. Similarly, in experiments
where adiabatic conditions are carefully maintained (as
in the experiments on direct measurements of caloric
effects [26]) the isentropic response will prevail. On the
opposite end, if experimental measurements are taken
when the sample is in thermal equilibrium with the
surroundings, then the isothermal response can be
isolated.
In summary, we proposed a way to enhance the

magnetoelectric coupling in magnetoelectric multiferroics
through a temperature mediated mechanism. Such mecha-
nism couples magnetization to the electric field (polari-
zation to the magnetic induction) indirectly by taking
advantage of the pyromagnetic and electrocaloric (pyro-
electric and magnetocaloric) properties of the material.
This is especially attractive in light of recent reports of
giant caloric effects in ferroics [27–33]. Such an
approach was tested in both direct and indirect first-
principles-based simulations and revealed that a signifi-
cant enhancement of magnetoelectric coupling could be
achieved. The advantage of this unusual strategy is that it

could be applied to both intrinsic and extrinsic multi-
ferroics, which is likely to open a variety of ways to
engineer materials with a desirable magnetoelectric
response.
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FIG. 3 (color online). Dependence of the polarization on magnetic field applied isentropically at T ¼ 840 K [panel (a)] and
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