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The ground state of the S ¼ 1 antiferromagnetic Heisenberg chain belongs to the Haldane phase—a
well-known example of the symmetry-protected topological phase. A staggered field applied to the S ¼ 1

antiferromagnetic chain breaks all the symmetries that protect the Haldane phase as a topological phase,
reducing it to a trivial phase. That is, the Haldane phase is then connected adiabatically to an
antiferromagnetic product state. Nevertheless, as long as the symmetry under site-centered inversion
combined with a spin rotation is preserved, the phase is still distinct from another trivial phase. We
demonstrate the existence of such distinct symmetry-protected trivial phases using a field-theoretical
approach and numerical calculations. Furthermore, a general proof and a nonlocal order parameter are
given in terms of a matrix-product state formulation.
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Introduction.—While symmetry broken phases can be
completely classified using the Landau theory, there still
exists no exhaustive understanding of topological quantum
phases. Topological quantum phases are gapped phases of
matter that are distinct from trivially disordered states but
cannot be characterized by any local order parameter. Over
the past few years, new theoretical frameworks have been
developed to understand and classify many different
topological phases. For example, topological phases of
noninteracting fermions are now completely classified
using K theory [1,2]. More generally, two gapped ground
states belong to the same phase if and only if they can be
adiabatically connected with respect to local Hamiltonians
[3–5]. Even when different states are connected by a
general adiabatic process, it is possible that they can no
longer be adiabatically connected if we impose symmetries
on the Hamiltonian. These are either states with sponta-
neous symmetry breaking or belong to the class of the
symmetry-protected topological (SPT) phase [4–10].
Examples of SPT phases include topological insulators
[11], which are protected by time reversal symmetry, and
the Haldane phase [12,13] in one dimension, which is
protected by either one of the time reversal, bond-centered
inversion, or the dihedral group of the spin rotations [7]. In
these examples, SPT phases are nontrivial in the sense that
they cannot be adiabatically connected to a trivial product
state, once an appropriate symmetry is imposed. They also
support gapless edge states and/or nontrivial degenerate
structures in the entanglement spectrum.
While the notion of the SPT phases is now established

and widely recognized, in this work we demonstrate that
site-centered inversion symmetry allows us to distinguish
different trivial one-dimensional phases. That is, there are
multiple “symmetry-protected trivial” (SPt) phases, i.e.,
symmetric phases connected adiabatically to product states,

which are still distinct in the presence of the imposed
symmetry. We note that, the word “symmetry-protected
trivial phase” is sometimes used in place of the standard
terminology of SPT (symmetry-protected topological)
phase, because the entanglement in such a phase is
short-ranged and is removable in an adiabatic process if
the symmetry is disregarded. In contrast, in what is called
an SPt phase in this work, the entanglement can be
completely removed adiabatically, even in the presence
of the imposed symmetry, to reduce the state to a product
state. However, it is still distinct from another trivial phase.
The SPt phases introduced here represent a new class of 1D
quantum phases that are protected by a point-group
symmetry but not captured by the cohomology classifica-
tion. While each of these phases is trivial by itself, the
quantum phase transition between them is experimentally
detectable (e.g., by a divergence of some susceptibilities).
Moreover, we derive non-local order parameters that could
be used to characterize each phase. While the concept of
SPt phases is very general, we illustrate it for clarity with a
simple model of spin-1 chain in the following.
The model.—In order to make the discussion concrete,

let us first consider the following simple model of S ¼ 1
chain:

H ¼
X
i

½~Si · ~Siþ1 þDzðSzi Þ2 − hzð−1ÞiSzi �: ð1Þ

The first term is the standard Heisenberg model with
antiferromagnetic exchange interactions which stabilize
the celebrated Haldane gap [12]. The Dz term is the
uniaxial single-ion anisotropy, which is commonly present
in magnetic ions with S ¼ 1 such as Ni2þ. The model with
uniaxial anisotropy Dz and hz ¼ 0 is well understood
[14–16]. For small Dz ≥ 0, the system is in the Haldane
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phase and undergoes a quantum phase transition into the
“large-D” phase at Dz ≈ 1. Both phases are gapped and
have the full symmetry of the Hamiltonian. The Haldane
phase is a well-known example of SPT phases [7,17] as
discussed in the introduction. The large-D phase is a trivial
phase which is adiabatically connected to the product state
jDi ¼ j � � � 0000 � � �i, where j0i represents the local spin
state with Sz ¼ 0. This state is the exact ground state of the
Hamiltonian (1) in the limit Dz → ∞. The hz term
represents a staggered field, which occurs in many
quasi-one-dimensional materials, including Haldane gap
systems, with an alternating crystal structure under an
applied (uniform) field. For simplicity, we only include the
staggered field term without the uniform one.
In the limit hz → ∞, the spins are fully polarized along

the staggered field, and the ground state is reduced to
another trivial product state jNi ¼ j � � � þ −þ − � � �i,
where þ and − represent the local spin states with Sz ¼
þ1 and Sz ¼ −1, respectively. It was recognized earlier that
there is no phase transition for 0 < hz < ∞ (for Dz ¼ 0)
[18]. That is, the Haldane phase is adiabatically connected
to the Néel state jNi with imposed antiferromagnetic (AF)
order. In the SPT framework, this is naturally understood;
since the staggered field breaks all the symmetries that
protect the Haldane phase as an SPT phase, it reduces the
Haldane phase to a trivial phase which also includes the
Néel state jNi.
Now let us discuss the model with both Dz and hz. In

fact, this model has been studied in Ref. [19] by a field
theory and numerical methods where a quantum phase
transition between the large-D phase and the imposed AF
phase was found. This is rather surprising, since both
phases are trivial and are adiabatically connected to product
states jDi and jNi that have the full symmetry of the
Hamiltonian. It is perhaps even more surprising in the light
of the recent concept of the SPT phases, where the existing
classification scheme [5,8,9] would not distinguish them.
While the nature of the phase transition was studied in
Ref. [19], why (and when) these two trivial phases are
distinguished was not completely clarified. In the remain-
der of this Letter, we demonstrate that this is an example of
distinct SPt phases and identify the symmetry that pro-
tects them.
Bosonization.—The standard bosonization procedure of

S ¼ 1 chains starts from two coupled S ¼ 1=2 chains, and
the low-energy effective field theory for H is given by the
Hamiltonian [20–22]

Heff ¼
v
2π

Z
dx

�
Kð∂xθÞ2 þ

1

K
ð∂xϕÞ2

�

þ geff

Z
dx cos ð2ϕÞ; ð2Þ

where ϕ and θ are dual field of each other, satisfying
½ϕðxÞ; θðx0Þ� ¼ iðπ=2Þ½sgnðx − x0Þ þ 1�. The Hamiltonian
(2) represents the so-called sine-Gordon field theory, which
is ubiquitous in many problems in 1þ 1 dimensions. Its
properties essentially depend on the coupling constant K.
When K > 2, the coupling geff is irrelevant under the
renormalization group (RG), and the system is renormal-
ized in the low-energy limit into the free boson theory with
geff ¼ 0, which is nothing but a gapless Tomonaga-
Luttinger liquid (TLL). On the other hand, if K < 2 and
geff is nonvanishing, the interaction is RG relevant, and the
system acquires an excitation gap. In the absence of the
staggered field, the Haldane and the large-D phases
correspond to geff > 0 and geff < 0, respectively, both with
K < 2. It is easy to see that, within the effective
Hamiltonian (2), the two phases with geff > 0 and geff <
0 are always separated by the critical point geff ¼ 0. This
actually comes from the fact that cosð2ϕÞ is the only
interaction compatible with the symmetry and the com-
pactification, ϕ ∼ ϕþ π and θ ∼ θ þ 2π, up to subleading
terms cosð2nϕÞ ðn ≥ 2Þ. In general, the effective theory can
also have the sin ð2ϕÞ term, which can be combined with
the cosð2ϕÞ term as cos ð2ϕþ αÞ with a phase shift α. It is
clear that, by changing α from 0 to π, the two phases with
geff > 0 and geff < 0 are adiabatically connected without
closing the gap [21]. Thus, for the two phases to be distinct,
sinð2ϕÞ has to be forbidden by some symmetry.
In fact, in the framework of bosonization, this is how a

symmetry protects the Haldane phase as an SPT phase
which is distinct from the trivial large-D phase. Any of the
three symmetries, which are known to protect the Haldane
phase, forbids the sinð2ϕÞ interaction [23]. Here, for
brevity, among these three symmetries, we only show
the representation of the bond-centered inversion Ib in
terms of the bosonic field ϕ, θ in Table I. The action of Ib,
ϕðxÞ → −ϕð−xÞ, forbids sinð2ϕÞ, which leads to the
distinction of the two phases with geff > 0 and geff < 0.
On the other hand, Table I shows that the site-centered
inversion Is also has the same action on ϕ, forbidding
sinð2ϕÞ. However, Is by itself is not sufficient to keep the
distinction between the two phases; they are adiabatically
connected without gap closing, because of the vertex

TABLE I. Symmetry transformations for the original spins and the bosonic fields.

Symmetry operation Symbol Transformation for spins Transformation for fields ðϕ; θÞ
Bond-centered inversion Ib ~Si → ~S1−i ϕðxÞ → −ϕð−xÞ, θðxÞ → θð−xÞ þ π

Site-centered inversion I s ~Si → ~S−i ϕðxÞ → −ϕð−xÞ þ π, θðxÞ → θð−xÞ
π rotation about the z axis Rz Sx;yi → −Sx;yi , Szi → Szi ϕ → ϕ, θ → θ þ π
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operators e�iθ allowed in the absence of the Uð1Þ sym-
metry of spin rotation about the z axis. According to
Table I, the combined operation I 0 ¼ Is ×Rz (Rz is the
global π rotation about the z axis), as well as Ib, forbids
e�iθ. They still allow the next leading ones e�2iθ.
Nevertheless, they just replace the direct transition between
the geff > 0 and geff < 0 phases by an intermediate phase
with spontaneous Z2-symmetry breaking. Thus, I 0 alone
should still maintain the distinction between two SPt
phases.
Numerical results.—The above bosonization analysis

suggests that we can introduce microscopic models with
less symmetries than Eq. (1), but with the symmetry under
I 0, to maintain the two distinct phases. As an example, we
consider the following Hamiltonian:

H0 ¼ Hþ
X
i

dxðSyi Sziþ1 − SziS
y
iþ1Þ: ð3Þ

The new term dx represents the (uniform) Dzyaloshinskii-
Moriya (DM) interaction with the DM vector parallel to the
x axis. This term breaks not only the Uð1Þ spin-rotational
symmetry about the z axis, but also both Is and Rz as
individual symmetries. However, H0 with a nonvanishing
dx still preserves the symmetry I 0 under the composite
operation.
We numerically study Hamiltonian (3) using the infinite

density-matrix renormalization group (iDMRG) [24–26].
The correlation lengths as functions of Dz are plotted in
Fig. 1 for different numbers χ of kept states and parameters
of the model. A divergent correlation length with increasing
χ indicates a critical point. For hz ¼ 0.1 and dx ¼ 0, we
find that the Haldane phase and the Néel state (Dz → −∞)
are adiabatically connected since all of the three sym-
metries protecting the Haldane phase are broken. However,
as found in Refs. [19,27], the transition atDz ∼ 1 still exists
[see Fig. 1(a)]. This indicates that there is a phase transition
between two trivial phases connected to jNi and jDi. To
confirm that this transition is protected by I 0 alone, we
further introduce dx in Fig. 1(b). A single transition in
Fig. 1(a) is now split into two transitions, but the two
phases are still separated by (two) transitions and thus are
distinct. In the intermediate phase, an AF order along the x
axis occurs and thus I 0 is spontaneously broken. Further
details about this calculation are shown in [28].
Once an explicit dimerization in introduced, e.g., by

adding a term δ
P

ið−1Þi~Si · ~Siþ1 with δ ≠ 0, I 0 is broken
without affecting any other symmetries in H0, and there is
only one trivial phase. Numerically, we observe that the
correlation length remains finite for all values of Dz when
dx ¼ 0 [28]. In fact, this can also be shown analytically by
considering the limit of δ ¼ 1 with dx ¼ 0. Here, the entire
chain is decomposed into isolated dimers. In particular, at
Dz ¼ hz ¼ 0, the ground state is simply given by a product
of spin singlet states on each dimer. It can be shown, by

solving the two-spin problem explicitly [28], that
this dimerized state is connected adiabatically to both
Dz → ∞ and hz → ∞ limits. Thus, the two trivial product
states jDi and jNi can be adiabatically connected through
the dimerized limit, and belong to a single phase, in the
presence of δ. This fact rules out the possibility that the two
trivial phases are distinct under the two-site translation
invariance and some on-site symmetry, as indicated in
Refs. [8,9].
Matrix-product state formulation.—Matrix-product

states (MPS) can represent gapped ground states of local
Hamiltonians in one dimension faithfully. Thus, the clas-
sification of gapped phases in one dimension, including the
SPt phase proposed in the present work, can be proven
rigorously within the MPS formalism. Let us begin with the
general MPS [31,32], without assuming any translation
invariance:

jψi ¼
X
fmng

� � �Γ½n−1�
mn−1 Λ

½n−1
2
�Γ½n�

mnΛ
½nþ1

2
�Γ½nþ1�

mnþ1
� � �

×j � � �mn−1mnmnþ1 � � �i; ð4Þ

where Λ½a� is a χa × χa positive diagonal matrix, Γ½n� is a
χn−1=2 × χnþ1=2 matrix, and mn represents the physical
degrees of freedom on site n. An MPS representation is
not unique for a given state but we can always choose the
canonical MPS [33] satisfying Tr½ðΛ½a�Þ2� ¼ 1, and

FIG. 1 (color online). Correlation lengths calculated for the
spin-1 chain (3) are plotted against Dz. The parameters are varied
as (a) hz ¼ 0.1, dx ¼ 0, and (b) hz ¼ dx ¼ 0.1. Each color and
symbol denotes the different number of kept states χ from 50 to
200. Insets show the nonlocal order parameters OsðLÞ=TrΛ4 for
L ¼ 100 and 200 (see text).
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E½n�ðIχnþ1=2
Þ ¼ Iχn−1=2 ; Ē½n�ðIχn−1=2Þ ¼ Iχnþ1=2

; ð5Þ

where Iχ is the χ × χ identity matrix, and E½n� and Ē½n� are
completely positive maps defined by

E½n�ðXÞ≡X
m

Γ½n�
m Λ½nþ1

2
�XΛ½nþ1

2
�ðΓ½n�

m Þ†;

Ē½n�ðYÞ≡X
m

ðΓ½n�
m Þ†Λ½n−1

2
�YΛ½n−1

2
�Γ½n�

m : ð6Þ

By introducing the metric jXj2 ≡ Tr½XðΛ½a�Þ2X†� in the
vector space of χa × χa matrices, we can introduce a
singular value decomposition of E½n� and Ē½n�. The canonical
condition Eq. (5) means that the identity matrices are left or
right “eigenvectors” of E½n� and Ē½n� belonging to the largest
singular value 1. In the following we assume that the MPS
is pure, that is the largest singular value 1 is nondegenerate
[28]. In order to consider the symmetry I 0, we define n ∈ Z
so that I s can be identified with n → −n with the inversion
center at site n ¼ 0. Following Refs. [7,34], if jψi is
invariant under the combined symmetry I 0, it satisfies

X
m0

umm0 ðΓ½n�
m0 ÞT ¼ eiθ

½n�
I 0 ðU½−n−1

2
�

I 0 Þ†Γ½−n�
m U

½−nþ1
2
�

I 0 ; ð7Þ

where umm0 is the representation of Rz acting on the

physical Hilbert space of each site, θ½n�I 0 is a phase, and

U½a�
I 0 is a χa × χa unitary matrix commuting with Λ½a�. I 0

also implies that Λ½a� ¼ Λ½−a� and χa ¼ χ−a. Using the
above relation twice, we obtain

Ē½n�ðA½n−1
2
�Þ ¼ e−iðθ

½n�
I 0 þθ½−n�

I 0 ÞA½nþ1
2
�; ð8Þ

where A½a� ≡ ðU½−a�
I 0 ÞTðU½a�

I 0 Þ†. Since jA½a�j2 ¼ 1, Eq. (8)
implies A½n�1=2� are left and right eigenvectors of Ē½n�

belonging to the singular value 1. The assumption of the
pure MPS, namely, nondegeneracy of the singular value 1

of Ē½n�ðXÞ, implies A½a� ¼ eiϕ
½a�
I 0 Iχa , where ϕ½a�

I 0 þ ϕ½−a�
I 0 ¼

0mod 2π. Combining these with Eq. (8) and the canonical

condition, we obtain θ½n�I 0 þ θ½−n�I 0 ¼ ϕ½nþ1=2�
I 0 − ϕ½n−1=2�

I 0

mod 2π. In particular, for n ¼ 0, we find

2ðθ½0�I 0 − ϕ½1=2�
I 0 Þ ¼ 0mod 2π: ð9Þ

As a consequence, θ½0�I 0 − ϕ½1=2�
I 0 is quantized to either 0 or π;

it cannot change unless the system undergoes a quantum
phase transition. This implies that, in the presence of the I 0
symmetry, there are two distinct phases corresponding to

θ½0�I 0 − ϕ½1=2�
I 0 ¼ 0 and π. Let us now consider the limits of the

trivial product states jDi and jNi. Here, all the matrices

Γ½n�, Λ½n�, and U½a�
I 0 are reduced to scalars (1 × 1 matrices)

and thus commute with each other. Then the fundamental

relation (7) for n ¼ 0 reads θ½0�I 0 − ϕ½1=2�
I 0 ¼ 0 for jDi and

θ½0�I 0 − ϕ½1=2�
I 0 ¼ π for jNi. This establishes that, under the I 0

symmetry, the two product states jDi and jNi indeed
belong to distinct phases, which are always separated by a
quantum phase transition.
As in the case of SPT phases, no local order parameter

can distinguish SPt phases. However, using the MPS
framework, we can directly derive nonlocal order param-
eters [35], which are sensitive to the phase factor

θ½0�I 0 − ϕ½1=2�
I 0 . In particular, we can define an operator

I 0
sð2Lþ 1Þ that inverts a block of 2Lþ 1 consecutive

sites. For L much larger than the correlation length, we
find that

OsðLÞ ¼ hψ jI 0
sð2Lþ 1Þjψi ≈ TrΛ4eiðθ

½0�
I 0−ϕ

½1=2�
I 0 Þ: ð10Þ

The insets in Fig. 1 show that the different SPt phases are
indeed distinguished by OsðLÞ=TrΛ4 ¼ �1, while
OsðLÞ ¼ 0 when I 0 is broken.
Conclusion and discussion.—We demonstrated that

there exist two distinct SPt phases in the presence of the
symmetry under the site-centered inversion combined with
a spin rotation. We showed the existence of such phases by
field-theoretical arguments based on bosonization, and
presented a general proof based on the MPS formalism.
While it is known that distinct trivial phases can exist in
translation-invariant systems [8,9], it is surprising that only
point-group symmetries can stabilize distinct trivial phases
in simple 1D systems. Our finding implies that more studies
are needed for complete classification of quantum phases in
one dimension under symmetries. We derived nonlocal
order parameter that could be measured in optical lattice
realizations [36]. Moreover, even without any measurement
of the nonlocal order parameter, the quantum phase
transition separating the distinct SPt phases can be detected
in standard experimental measurements, such as a diver-
gence of the low-temperature specific heat when the gap is
closing. This, in fact, is more in line with the operational
definition of the SPt phases.
The notion of the SPt phases is not restricted to one-

dimensional systems. In fact, what appear as examples of
SPt phases in two dimensions were discussed in
Refs. [37,38]. The lack of a universal theoretical descrip-
tion of quantum many-body systems in higher dimensions
makes a systematic analysis of SPt phases more difficult
than in one dimension. Nevertheless, it would certainly be
an interesting direction for the future.
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