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Quantum critical (QC) phase transitions generally lead to the absence of quasiparticles. The resulting
correlated quantum fluid, when thermally excited, displays rich universal dynamics. We establish
nonperturbative constraints on the linear-response dynamics of conformal QC systems at finite temper-
ature, in spatial dimensions above 1. Specifically, we analyze the large frequency or momentum
asymptotics of observables, which we use to derive powerful sum rules and inequalities. The general
results are applied to the OðNÞWilson-Fisher fixed point, describing the QC Ising model when N ¼ 1. We
focus on the order parameter and scalar susceptibilities, and the dynamical shear viscosity. Connections to
simulations, experiments, and gauge theories are made.
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The quantum Ising model in two spatial dimensions
ð2þ 1ÞD, e.g., on a square lattice, undergoes a quantum
critical (QC) phase transition as the ratio of the transverse
magnetic field to the exchange coupling is tuned. It is the
archetypal example of a nontrivial ð2þ 1ÞD QC point,
possibly the simplest one with Z2 symmetry, but lacks an
exact solution contrary to its lower dimensional counterpart.
Rather than having quasiparticle excitations, present in the
para- or ferromagnetic phases, the spectrum at the QC
point is continuous. Various methods such as Monte Carlo
simulations [1], field theory expansions [1–3], and recently
conformal bootstrap [4], have shed light on the critical
exponents characterizing its thermodynamics and ground
state correlations. In contrast, little is known about its
quantum dynamical properties at finite temperature [3,5],
which are not only important to understand the nature of this
strongly correlated quantum fluid but also of clear relevance
to experiments.
In this article we study QC dynamics, with a focus on

the quantum OðNÞ Wilson-Fisher fixed point which
describes the QC transition for the quantum Ising
(N ¼ 1) and XY (N ¼ 2) models, and the Néel transition
in certain antiferromagnets (N ¼ 3). Focusing on a large
class of experimentally relevant observables, we establish
nonperturbative results for the large frequency or momen-
tum asymptotic behavior and sum rules. These provide
strong constraints on the universal scaling functions char-
acterizing the system’s low-energy responses. The exact
sum rules can be seen as generalizations of the celebrated
f-sum rule to scale invariant systems. Our results provide
rigorous means to assess approximations, constrain
numerical results, and ultimately assist with the analysis
of experimental data. The methods we use partly rely on the
conformal symmetry of the QC point, present for the OðNÞ
Wilson-Fisher fixed point. However, the key ideas are more
general, and they greatly generalize the recent analysis [6]
for the dynamical conductivity of ð2þ 1ÞD conformal

field theories (CFTs). The Letter is organized as follows:
We first establish general properties regarding the asymp-
totics and sum rules of CFTs, and subsequently apply them
to the Wilson-Fisher theory, and finally give a broad
outlook, including a discussion regarding the implications
for Monte Carlo simulations.
Asymptotics and OPE.—We consider a thermally excited

system tuned to a QC point via a nonthermal parameter g.
In the phase diagram Fig. 1(a), this corresponds to the line
in the QC fan at g ¼ gc and T ≥ 0. We are interested in the
linear-response dynamics at finite temperature, more pre-
cisely in the retarded dynamical susceptibility associated
with a bosonic observable O, such as the energy or charge
density: χRðt;xÞ ¼ −iΘðtÞh½Oðt;xÞ;Oð0; 0Þ�iT , where the
average is taken over the thermal ensemble. We set
ℏ ¼ kB ¼ c ¼ 1; c is the characteristic speed near the
QC point. We will often work in Fourier space:
χRðω;kÞ ¼ R

dtddxχRðt;xÞeiωt−ik·x, where ω is the real
frequency and k the momentum. Using T, the only energy
scale available, χR can be rewritten to make its scaling
properties manifest:
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FIG. 1 (color online). (a) Phase diagram near a quantum critical
point (QCP). (b) Asymptotic behavior of the Euclidean suscep-
tibility associated with an operator O of scaling dimension Δ:
χEðiωnÞ ¼ hOð−ωnÞOðωnÞiT . (c) Schematic operator product
expansion (OPE) determining the asymptotics of χ. “desc.”
denotes the descendants of the primary On (dimension Δn).
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χRðω;kÞ ¼ T2ΔO−DΦ

�
ω

T
;
k

T1=z

�
; ð1Þ

where ΔO is the scaling dimension of O, Φ is a universal
scaling (complex) function, and z the dynamical critical
exponent. This scaling structure emerges at low energies,
i.e., ω; jkj; T ≪ ΛUV, where ΛUV is a microscopic lattice
energy scale, represented by the horizontal dot-dashed line
in Fig. 1(a). We emphasize that in this regime the ratios
ðω; jkjzÞ=T can be arbitrary. We introduce the correspond-
ing universal response function

Rðω;kÞ ¼ χRðω;kÞ
iω − 0þ

; ð2Þ

using the Kubo prescription. E.g., if O ¼ Jx is a conserved
current, χRxx is the xx-polarization function and Rxxðω; 0Þ ¼
σxxðωÞ the dynamical conductivity. Because of the strong
interactions and the resulting absence of quasiparticles in
generic QC systems, little is known about these universal
responses, and our goal is to unravel some of their robust
properties. First, let us begin with the large-frequency
regime, ω ≫ T; jkj, where the dynamics are near those
of the ground state. These can be elegantly studied via the
operator product expansion [7] ofO with itself. The OPE is
an operator relation and does not depend on temperature.
For a general QFT, it is a short time or distance expansion
that captures the behavior of the operator product
O1ðt;xÞO2ð0; 0Þ as t; jxj → 0, which by locality can be
expressed as an infinite sum of operators evaluated at
t; jxj ¼ 0. We will mostly focus on CFTs, which have
z ¼ 1 and describe a large class of experimentally relevant
QC phase transitions such as those in the quantum Ising
and XY models. In a CFT, the OO OPE [8,9] of a primary
operator O with scaling dimension ΔO reads [Fig. 1(c)]

OðxÞOð0Þ ¼
X

On primary

Cnðx; ∂
∂yÞ

jxj2ΔO−Δn
OnðyÞjy¼0; ð3Þ

which is expressed in imaginary time τ: jxj2 ¼ τ2 þ x2.
A primary operator transforms homogeneously under
conformal transformations, e.g., conserved currents and
the order parameter in the OðNÞ model. The sum in Eq. (3)
is over primaries On with scaling dimensions Δn; it
includes the identity (dimension 0). The differential oper-
ator Cnðx; ∂=∂xÞ is homogeneous under x → bx, and
encodes the contributions from the descendants of On
(obtained by applying derivatives to On). Going to Fourier
space and taking a thermal expectation value (TEV) we
obtain a key result [Fig. 1(b)]: the jkj ≫ T behavior of the
Euclidean susceptibility,

χEðkÞ ¼ jkj2ΔO−D
X

On primary

�
cnðkÞ

hOniT
jkjΔn

þ � � �
�
; ð4Þ

where jkj2 ¼ ω2
n þ k2, ωn ¼ 2πTn is a Matsubara

frequency. The dimensionless functions cn encode the
appropriate k-space tensor structure (and can contain
logarithms). The dots correspond to higher powers of
T=jkj arising from the descendants of On. Crucially, a
scaling operator will acquire a TEV, hOniT ¼ dnTΔn , since
T is the only energy scale. dn is a universal real number.
Substituting this into Eq. (4) we obtain a general expression
for the large-k asymptotic expansion of χ. We see that the
lowest dimension operators appearing in the OPE dictate
how the susceptibility approaches its ground state value as
T=jkj → 0. To obtain the real quantum dynamics, we can
analytically continue the imaginary frequency expansion
Eq. (4) to real frequencies [10] termwise, with the replace-
ment iωn → ωþ i0þ. This follows from the structure of
the OPE and the spectral representation connecting the
Euclidean and retarded susceptibilities (see Supplemental
Material [11] for an extension of the proof in [12]).
Interestingly, unitarity and conformal symmetry con-

strain the scaling dimensions of these operators [13]:
Δn ≥ ðD − 2Þ=2. This leads to important inequalities for
dynamical susceptibilities. Let us work in ð2þ 1ÞD and
consider a putative low-energy susceptibility χðωÞ obtained
from an experiment or simulation, and express it as

χðωÞ ¼ω≫T
ω2δ1−3

�
aþ b

�
T
ω

�
δ2 þ � � �

�
; ð5Þ

at large frequencies. Finding either δi < 1=2 would violate
unitarity bounds and thus rule out a conformal QC point
[14]. For Wilson-Fisher QC points, we shall see that the
stronger condition, δ2 > 1.4, holds. Before applying the
above general results to those CFTs, we discuss how
the asymptotics can be used to prove sum rules for any
susceptibility (2-point function).
Sum rules.—We put forth a powerful sum rule for the real

frequency quantum dynamical response function:
Z

∞

−∞

dω
π

ReδRðω;kÞ ¼ −δχ∞: ð6Þ

δR is defined as in Eq. (2), with a modified susceptibility
χ → δχ, defined below. The sum rule is independent of
small frequency details, and fundamentally relies on the
retarded causal structure of χR. More precisely, it is the
zero-frequency limit of the Kramers-Kronig transform for
the modified susceptibility, δχRðω;kÞ − δχ∞, which we
now discuss. In the QC scaling regime, χ does not usually
decay at large frequencies unlike on the lattice because it
encodes excitations at all scales. To formulate the sum rule,
we thus generally need to subtract terms, denoted by ~χ, from
χ to remove its large-ω divergence [15–18]: δχðΩ;kÞ ¼
χðΩ;kÞ − ~χðΩÞ, where Ω is a complex frequency in the
upper half plane. In some cases, one further needs to subtract
a remaining constant: δχ∞ ¼ δχEðjkj → ∞Þ, where the limit
is taken at fixed T. We emphasize that ~χðΩÞ is momentum
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independent because the asymptotic behavior Eq. (4)
depends on powers of T=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
n þ jkj2

p
due to the asymptotic

reemergence of Lorentz invariance (broken by T), and we fix
k as we take ωn ≫ T. We note that the correlation functions
studied in this Letter only depend on the magnitude of
the momentum jkj, which implies that ImχR,ReR are
ω-even functions, so that the integral Eq. (6) can be written
for ω ≥ 0.
The highly nontrivial and theory dependent information

is contained in the subtraction terms ~χ; δχ∞ which are
determined from the large-frequency behavior, i.e., from
the leading terms in OPE, Eq. (3). We now derive some
general properties of the subtractions. First, the main
subtraction δχ ¼ χ − ~χ is generally required because the
leading asymptotic jkj ≫ T behavior of χEðkÞ is jkj2ΔO−D,
and most operators have 2ΔO > D. In contrast, in almost
all cases the subtraction of a constant is not needed, i.e.,
δχ∞ ¼ 0. Indeed, from Eq. (4) this constant can be nonzero
only if the OO OPE contains an operator O� with
dimension Δ� ¼ 2ΔO −D. Moreover, O� needs to have
a nonzero TEV. In which case, δχ∞ ∝ hO�iT and the
constant of proportionality is the corresponding OPE
coefficient. A further necessary condition for δχ∞ ≠ 0 is
ΔO ≥ ð3D − 2Þ=4 because of the unitarity bound [13] on
Δ�. A generic case where the subtraction δχ∞ appears is for
a 2-point function of Tμν, the stress tensor, because the
latter has scaling dimension D. In this case O� ¼ Tμν,
since the stress tensor generally appears in the TμνTλε OPE.
Below we will the consequences of this for the shear
viscosity.
OðNÞ model.—We now apply the above general results

to the QC point of the quantum OðNÞ model [3,19] in
dimensions 2 < D < 4. This is the famous Wilson-Fisher
conformal fixed point. It describes a variety of experimen-
tally relevant quantum phase transitions: Ising (N ¼ 1), XY
(N ¼ 2), etc. An exact solution exists at N ¼ ∞, which
we will use to perform nontrivial checks. As a field theory,
the OðNÞ (nonlinear sigma) model is defined by the
action S ¼ R

dDxð1=gÞ∂μφa∂μφa, where φaðxÞ is a real
N-component vector field of fixed norm φaφa ¼ 1. As the
coupling g is increased the system undergoes a QC phase
transition at g ¼ gc from a broken symmetry phase to a
symmetric one for g > gc [Fig. 1(a)].
For our asymptotics and sum rule analysis we need the

list of operators (On;Δn) with low dimensions Δn ≤ D.
These are known from large-N and small (4 −D) expan-
sions [1,2], Monte Carlo calculations [1], nonperturbative
bootstrap [4,20,21], etc. The first one being the order
parameter field ϕa with dimension Δϕ ¼ ðD − 2þ ηϕÞ=2,
where ηϕ is the field’s anomalous dimension. The following
OðNÞ-invariant operators will also appear: the “thermal”
operator (Og;Δg), the conserved currents (Jμab; D − 1), and
the stress tensor (Tμν; D). The dimensions of the currents
and stress tensor receive no anomalous corrections because

they are protected by symmetries. The operator Og (often
denoted by ε in the context of the Ising model) is associated
with the Lagrange multiplier field λðxÞ that constrains
φaφa ¼ 1 in the OðNÞ model. It has dimension
Δg ¼ D − 1=ν, where ν is the correlation length exponent;
for the D ¼ 3 Ising case [1,4], Δg ¼ 1.413. It is directly
related to the singlet ϕ2, and tunes the system away from
the QC point. Being the only relevant OðNÞ-symmetric
scalar, it is the most important operator as it dominates the
asymptotic quantum dynamics: we will see that it generally
gives the first finite-T correction. This was recently shown
[6] to be the case for the conductivity of the OðNÞ model,
and observed numerically [6] for N ¼ 2. Given the general-
ity of our OPE analysis, we infer that this “dominance” of
the relevant symmetric scalar is a generic property of QC
transitions.
Order parameter susceptibility.—We first study

χabðkÞ ¼ hϕað−kÞϕbðkÞiT , i.e., the order parameter suscep-
tibility. It is one of the simplest observables, and yields the
low-energy staggered spin susceptibility of quantum anti-
ferromagnets with transitions in theOðNÞ universality class.
We begin by analyzing its asymptotics. By symmetry, and
from the knowledge of the operators with low dimensions
we can write the leading terms in the ϕaðxÞϕbð0Þ OPE:

Cϕ

x2Δϕ
þ CϕϕgOgð0Þ

x2Δϕ−Δg
þ CϕϕTxμxνTμνð0Þ

x2Δϕ−Dþ2
þ � � � ; ð7Þ

where we focus on a; b ¼ 1 since χab is diagonal by virtue
of the OðNÞ symmetry. We have omitted the contribution
from the currents Jμab because they have vanishing TEV
(no excess charge or net current in the thermal ensemble).
Taking the TEV of Eq. (7) gives the asymptotic
behavior

χE11ðiωn;kÞ ¼ jkj2Δϕ−D
�
Cϕ þ Cϕϕgdg

����Tk
����
Δg

þ CϕϕT
kμkν
k2

dμνT

����Tk
����
D
þ � � �

�
: ð8Þ

C#=C# in Eqs. (7) and (8) are real OPE coefficients in
position and momentum space, respectively, which can be
obtained from ground state 3-point functions. As antici-
pated, the first subleading term comes from the relevant
scalar Og. The next term arises from the stress tensor, where
hTμνiT ¼ dμνT TD is diagonal. At N ¼ ∞, Δϕ ¼ ðD − 2Þ=2
saturates the unitarity bound, but finite N fluctuations lead
to a small anomalous dimension ηϕ ≪ 1 [1,2,4,20]. The
OPE coefficients Cϕϕg; CϕϕT are generally finite and can be
computed using a 1=N expansion for instance. Cϕϕg has
been computed using bootstrap [22] and Monte Carlo
calculations [23] for N ¼ 1. From the above expansion,
we can derive the sum rule for χab. First, for any N, χab
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decays sufficiently fast at large frequencies so that the
subtractions vanish, ~χab ¼ δχ∞ab ¼ 0, and the sum rule takes
its simplest form:

Z
∞

0

dωReRabðω;kÞ ¼ 0; ð9Þ

where Rabðω;kÞ ¼ χRabðω;kÞ=ðiω − 0þÞ is the response.
When N ¼ ∞, we have the exact solution for

2 < D < 4: χEabðiωn;kÞ ¼ δab=ðω2
n þ k2 þm2

TÞ, where
mT ¼ ΘdT is the thermal mass, and Θd is a positive
number [11,24]. Expanding for jkj ≫ T, we get
χEabðkÞ ¼ ð1=k2Þ½1 − ðmT=kÞ2 þ ðmT=kÞ4 þ � � ��. In agree-
ment with the OPE, Eq. (7), the subleading term −m2

T=k
4

has ΔN¼∞
g ¼ 2 (i.e., 1=ν ¼ D − 2) and is proportional to

hOgiT ¼ ffiffiffiffi
N

p
m2

T . This later TEV is evaluated [6] in the
N ¼ ∞ limit. We note the absence of a contribution from
the stress tensor, ∼m3

T=jkj5. Although the real-space OPE
coefficient CϕϕT in Eq. (7) is nonzero, upon Fourier
transforming to k space, that term does not contribute to
the large-k behavior. This is an artifact of N ¼ ∞, where ϕ
has no anomalous dimension. Finally, the sum rule Eq. (9)
can be easily checked as the spectral function is a sum of
(quasiparticle) delta functions.
Scalar susceptibility.—The scalar susceptibility χs is the

2-point function of the thermal operator, hOgð−kÞOgðkÞiT .
It has recently been the focus of attention in the study of the
amplitude “Higgs” mode [25–30]. Again, we first examine
the OgOg OPE. The terms relevant here are given, mutatis
mutandis, by Eq. (7). This then leads to the large-k
expansion Eq. (8) with (ϕa;Δϕ) replaced by (Og;Δg).
With these information, we can derive the sum rule for χs.
First, δχ∞s ¼ 0 since there is no OðNÞ singlet with
dimension Δ� ¼ 2Δg −D in the spectrum. The other
ingredient needed to build the sum rule is the term
removing the large-ω divergence, ~χs. In this case, it is
simply the ground state value of χs at k ¼ 0:
~χsðΩÞ ¼ χT¼0

s ðΩ; 0Þ ¼ CgΩ2Δg−D. The sum rule reads

Z
∞

0

dωRe½Rsðω;kÞ −RT¼0
s ðω; 0Þ� ¼ 0: ð10Þ

We can again carry out the asymptotic analysis exactly
for N → ∞. The result is [11] χEs ðkÞ ¼ −ðN=a0Þjkj4−D
½1 − agðT=kÞ2 − aTðT=jkjÞD�, where a# are D-dependent
constants. Interestingly, the coefficient of the subleading
term, ag, vanishes exactly for D ¼ 3. This comes from the
somewhat surprising fact that the thermal operator Og does
not appear by itself in the OgOg OPE when D ¼ 3 in the
N ¼ ∞ limit. In other words, the CD¼3

ggg OPE coefficient
vanishes. This does not happen for D ≠ 3, and we do not
expect it to hold at finite N in D ¼ 3. Indeed, for the Ising
case this coefficient was recently computed using
Monte Carlo methods and found to be finite [23].

Finally, the sum rule Eq. (10) can be checked numerically
[11] at N ¼ ∞.
Dynamical shear viscosity.—Finally, we examine a

correlator involving the stress tensor. Not only is this of
fundamental interest because it can be defined for any
CFT, but it will also reveal the full complexity of the sum
rule. We consider the dynamical shear viscosity, ηðω;kÞ ¼
χRη ðω;kÞ=ðiω − 0þÞ, obtained from the Txy 2-point func-
tion, χRη . Txy measures the flux of x momentum in the y
direction, and η probes the system’s resistance against
momentum gradients. The asymptotic behavior of η
follows from the TxyTxy OPE, which we here formulate
in momentum space:

lim
jkj≫jpj

TxyðkÞTxyð−kþ pÞ

¼ CT jkjDδðpÞ þ CTTgjkjD−ΔgOgðpÞ
þ CμνTTTTμνðpÞ þ � � � : ð11Þ

This can then be used to derive a sum rule for η, which is
more involved than for the response functions considered
above. For one, δχ∞η ¼ CμνTTThTμνiT is nonzero, as was
explained above on general grounds for 2-point functions
involving Tμν. Second, the subtraction involved in δχη is
temperature dependent because Og is relevant. This leads
to the following sum rule for the shear response:

Z
∞

0

dωRe½ηðω;kÞ − CTωd −Aðω=iÞd−Δg � ¼ cηP; ð12Þ

where d ¼ D − 1, A ¼ CTTghOgiT , P ¼ hTxxiT is the
pressure of the CFT, and cη ¼ −π CμνTTThTμνiT=ð2PÞ is a
dimensionless constant. The second term in the integrand is
ηT¼0ðω; 0Þ and mirrors the subtraction in the scalar sum
rule. The third one depends on temperature via A ∝ TΔg

and scales with a nontrivial ω power depending on the
correlation length exponent ν via Δg ¼ D − 1=ν. Some QC
theories are simpler in that they lack a relevant scalar that
condenses at T > 0, as we now discuss.
We contrast the above shear sum rule with the simpler

ones obtained [12,31] for N ¼ 4 super Yang-Mills and
pure Yang-Mills theory, which are gauge theories inD ¼ 4.
In those cases, the result is as in Eq. (12) except that the
third term in the integrand is absent. This stems from the
fact that those theories do not contain a symmetric relevant
scalar like Og; i.e., they are not obtained by fine tuning a
symmetric “mass” term to zero. The massless version of
QED in D ¼ 3 with many Dirac fermions coupled to a
Uð1Þ gauge field also satisfies this property, being a stable
phase. It will thus have a shear sum rule of the same form as
super Yang-Mills theory. Finally, we note that shear sum
rules analogous to Eq. (12) were derived in the context of
strongly interacting ultracold Fermi gases [32–34], which
generally do not have emergent Lorentz symmetry.
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Outlook.—Our nonperturbative results, via the operator
product expansion, for the asymptotics and sum rules
apply to a wide class of conformal QC points, many of
which describe experimentally relevant systems. It will be
interesting to apply the program described in this article
to theories other than to the OðNÞ Wilson-Fisher fixed
point, treated here, or even to nonconformal QC systems.
The strong constraints we have derived will also be useful
for the analysis of numerical and experimental data. For
instance, quantum Monte Carlo is a powerful tool to study
QC dynamics in imaginary time [6,35–39], and can be used
to study the asymptotic regime where the OPE analysis
applies, as was recently shown [6] for the conductivity.
The asymptotics and sum rules will also help with the
difficult task of analytically continuing the imaginary time
data to real time by constraining the allowed scaling
functions. Along those lines, our results can be used with
a novel method [6,36] of analytic continuation based on the
AdS/CFT holographic principle [40]: Specific data about a
QC theory can be encoded in holographic physically
motivated Ansätze for the scaling functions. These can
then be used to perform the continuation.
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