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Recent experiments have demonstrated subdecoherence time control of individual single-electron orbital
qubits. Here we propose a quantum-dot-based scheme for generation and detection of pairs of orbitally
entangled electrons on a time scale much shorter than the decoherence time. The electrons are entangled,
via two-particle interference, and transferred to the detectors during a single cotunneling event, making the
scheme insensitive to charge noise. For sufficiently long detector dot lifetimes, cross-correlation detection
of the dot charges can be performed with real-time counting techniques, providing for an unambiguous
short-time Bell inequality test of orbital entanglement.
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The concept of quantum entanglement has, ever since its
inception, attracted much attention. Initially questioned
because of its nonlocal properties, violating local realism
[1,2], entanglement has over past decades emerged as an
indispensable resource for quantum information processing
[3]. Entangled solid-state qubits [4–6] are of particular
interest because of the prospects of integration with conven-
tional electronics. Spurred by proposals for electronic spin-
based quantum computing [7,8], spin qubit experiments
[9,10], and demonstrations of long spin decoherence times
[11], extensive efforts have been devoted to investigations of
spin entanglement in nanostructures. Recent experimental
progress comprises entanglement of single-electron [12] and
two-electron [13] spin qubits and splitting [14–17] of spin-
singlet Cooper pairs in hybrid superconducting systems.
In contrast to spin, entanglement between electronic

orbital degrees of freedom [18,19], such as charge states
in quantum dots [20–23] or edge channels in quantum
Hall systems [24–26], has received limited attention. In
particular, orbital entanglement has not been demonstrated
experimentally. The key reason is arguably that super-
positions of orbital states are sensitive to charge noise,
resulting in short decoherence times, of the order of nano-
seconds [27–30]. This has led to the widespread view that,
despite all-electrical quantum state control and readout,
electronic orbital degrees of freedom cannot be harnessed
for quantum information processing. Very recently, this
view was contested by demonstrations of fast, coherent
operations of single-electron orbital qubits on the pico-
second time scale [31–33], several orders of magnitude
shorter than the decoherence time. These experiments
motivate renewed efforts on orbital-based quantum infor-
mation processing and call for novel schemes to generate
and detect orbital entanglement on time scales well below
the decoherence time.
Here we propose such an entanglement scheme, based

on coherent electron cotunneling [34] in a quantum dot

system; see Fig. 1. During the cotunneling event, of the
order of picoseconds [35,36], the electrons are entangled
via two-particle interference [24,37] and simultaneously
transferred to the detectors, fully preserving coherence
[38,39]. We show, based on the full transfer statistics
[40,41], that the entanglement can conveniently be detected
by violating a Bell inequality (BI) formulated in terms of
low-frequency current cross-correlators [24,25,42]. More-
over, for long enough detector dot lifetimes, measurements
of coincident electrons in the detector dots can be

FIG. 1 (color online). (a) Schematics of the setup, with
entangler (E) and detector (A and B) subsystems, quantum dots
(circles), electronic leads (hatched rectangles), and key tunneling
couplings (thick lines) shown. (b) A typical configuration of E
and A; B dot energies ϵ1, ϵ2, ϵα, ϵβ with α ¼ A�, β ¼ B�, and
interdot charging energies U12, Uαβ shown, fulfilling the two-
particle resonance condition ϵ1 þ ϵ2 þ U12 ¼ ϵα þ ϵβ þ Uαβ.
(c) The three tunneling processes in the pair transfer cycle:
(I) entangler dots 1, 2 populated with rates Γ1, Γ2; (II) coherent
cotunneling of electrons from entangler to detector dots (here,
α ¼ A− and β ¼ Bþ), with amplitude tβα21; and (III) electrons in
α, β emitted to detector leads, with rates Γα, Γβ.
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performed with real-time charge counting techniques [43].
This provides for an unambiguous BI test of orbitally
entangled electrons in nanosystems based on short-time
measurements.
The combined entangler-detector system, shown in

Fig. 1, consists of two entangler (E) dots, 1 and 2, and
four detector dots, α ¼ A� at A and β ¼ B� at B. Each dot
γ ¼ 1; 2; α; β has one active, spin-degenerate level at
energy ϵγ and is tunnel-coupled to an electronic lead, with
a rate Γγ . The six dots are further coupled to each other
(nearest neighbors) with tunneling amplitudes tα1; tα2; tβ1;
tβ2; t12; tAþA−, and tBþB−. The Coulomb interaction energy
between different dots, γ ≠ γ0, is Uγγ0 . Due to strong on-site
repulsion, double occupation of the dots is prevented.
Consequently, the spin degree of freedom only leads to
a renormalization of tunneling rates and is hereafter
neglected.
As illustrated in Fig. 1, the dot level energies ϵγ are tuned

to suppress single-particle tunneling between entangler and
detector dots (as well as between the two entangler dots). In
addition, to make cotunneling the dominating entangler-
detector transport mechanism, the energies are chosen to
optimize the conditions ϵα þ ϵβ þUαβ ≈ ϵ1 þ ϵ2 þU12 for
resonant two-particle tunneling between entangler dots 1,
2, and detector dots α; β. The amplitude for the cotunneling
is denoted tβα21. Moreover, cotunneling between the
entangler dots and two dots at the same detector, A or
B, is tuned off resonance.
The tunneling rates obey Γα;Γβ ≫ Γ1;Γ2 ≫ tβα21=ℏ.

Hence, the cotunneling is much slower than the dot-lead
tunneling (sequential) and backtunneling from the detector
to the entangler dots is suppressed. Moreover, in this
regime there are at most two particles in the dot system
at the same time. Furthermore, taking ℏΓα ≫ tAþA− and
ℏΓβ ≫ tBþB−, tunneling between the detector dots can be
neglected. The two entangler leads are kept at a finite bias
while the four detector dots are grounded. Throughout the
Letter, we consider the high-bias regime; the energy
difference between dot system states differing by one
electron is well inside the bias window and the lead
temperature can effectively be put to zero.
We first give a physically compelling picture of the ideal

working of the entangler-detector system; a detailed analy-
sis follows below. In Fig. 1, the tunneling processes in the
pair transfer cycle, from entangler to detector leads, are
shown. (I) Starting from an empty system, electrons tunnel
sequentially into the two entangler dots 1 and 2. (II) The
electrons in the entangler dots cotunnel resonantly to the
detector dots, one electron to α and one to β. This process is
coherent and key to the entangler-detector scheme in the
following ways. (1) The electrons can cotunnel in two
ways, from 1 to α and 2 to β or 1 to β and 2 to α. This gives
rise to orbital entanglement via two-particle interference as
illustrated in Fig. 2. The quantum state emitted from the
entangler can be written

jψient ¼ c21j2iAj1iB − c12j1iAj2iB; ð1Þ

with j1iA denoting an electron emitted from dot 1 toward
detector A, etc., and c12, c21 constants depending on the
system properties. We note that for jc12j ¼ jc21j ¼ 1=

ffiffiffi
2

p
,

jψient is maximally entangled. (2) By tuning, with electro-
static gates, the dot-entangler tunneling amplitudes, t1α etc.,
the emitted state jψient can be locally rotated in the j1i; j2i
basis during the transfer to the detector dots; see Fig. 2.
(III) At the detector dots, the two particles tunnel sequen-
tially out to the leads. As will be described below, depend-
ing on the values of Γα, Γβ, the entanglement can be
detected via violation of a BI formulated in terms of either
low-frequency current cross-correlations or short-time
measurements of joint detection probabilities.
To substantiate the qualitative picture above, we first

recall that uncertainty principle arguments give a cotunnel-
ing time ∼ℏ=ΔE, where ΔE is determined by the energy of
the classically forbidden state, virtually populated during
the tunneling [34]. Here we take the cotunneling time,
typically of order of picoseconds in quantum dot systems
[35], much smaller than the decoherence time 1=Γφ, of the
order of nanoseconds [27,29]. The cotunneling process
is thus coherent, as recently demonstrated for double-
dot systems [38], and can be treated within an effective
Hamiltonian approach.
To this end, we write the total Hamiltonian as

H ¼ H0 þ V. The term H0 describes the single-particle
dot levels, the Coulomb repulsion between the dots, the
electronic leads, and the dot-lead tunneling. The perturba-
tion V describes the dot-dot tunneling. The cotunneling
dynamics is obtained from a Schrieffer-Wolff transforma-
tion [44], where V is eliminated to leading order (see the
Supplemental Material [45]). Besides cotunneling proc-
esses, the transformation yields renormalization terms
which are absorbed into the dot-level energies, the
Coulomb interaction strengths and the dot-lead couplings

FIG. 2 (color online). Schematics of the entanglement creation
and state rotation during the cotunneling, emphasizing the orbital
states j1iAj2iB (j2iAj1iB) for electrons emitted toward A (B). The
state jψient in Eq. (1) is a coherent two-particle superposition,
describing the entangler dot electrons being emitted 1 → A,
2 → B (filled dots, state j1iAj2iB) or 2 → A, 1 → B (empty dots,
j2iAj1iB). The tunability of the tunneling amplitudes, tα1 etc.,
here illustrated as beam splitters (shaded yellow) parametrized by
angles θA, θB, allows for a rotation in orbital fj1i; j2i →
jþi; j−ig space of A and B.
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in H0. Furthermore, neglecting terms describing processes
much slower than competing sequential dot-lead tunneling
or resonant two-particle cotunneling, we obtain the effec-
tive cotunneling Hamiltonian,

Heff ¼ H0 þ
X
αβ

ðtβα21d†βd†αd2d1 þ H:c:Þ; ð2Þ

with d†β (dβ) the creation (annihilation) operator of an
electron in dot β. Here, the two-particle tunneling ampli-
tudes tβα21 are related to the single-particle amplitudes
through

tβα21 ¼
tβ1tα2
ΔEβα

−
tα1tβ2
ΔEαβ

; ð3Þ

with the energies ΔEβα ¼ ΔEαβ½α↔β� depending
on ϵγ and Uγγ0 (see the Supplemental Material [45]). In
particular, at two-particle resonance, ϵαþϵβþUαβ ¼
ϵ1þϵ2þU12≡Er, 1=ΔEβα ¼ ðEr − ½ϵ2 þ ϵβ þU2β�Þ−1þ
ðEr − ½ϵ1 þ ϵα þ U1α�Þ−1.
Importantly, the terms in Eq. (3) correspond to two

different two-particle paths, 1 → β, 2 → α and 1 → α,
2 → β (see Fig. 2), that take the two electrons between
the entangler and detector dots, with tunneling times
ℏ=ΔEβα and ℏ=ΔEαβ, respectively. Hence, the total cotun-
neling amplitude tβα21 is a coherent superposition of the
individual two-particle tunneling amplitudes. The minus
sign between the terms is a consequence of fermionic
exchange. Note that the amplitude for both electrons to
tunnel to the same detector side, A or B, is negligible since
the process is off-resonant (due to level detuning and
Coulomb interaction UAþA−; UBþB−).
Starting from the state with both entangler dots occupied,

time evolution governed by Heff gives that the two-particle
state tunneling out into the detector dots is jψidot ∝P

αβtβα21jαijβi, with jαi ¼ jþiA; j−iA and jβi ¼ jþiB;
j−iB. We stress that each electron pair reaching the detector
dots tunnels directly out into the leads; i.e., there is no
backtunneling to the entangler dots. This is a consequence
of the detector dot-lead couplings being much stronger than
the detector-entangler dot ones. Put differently, jψidot
describes the two-particle state decaying from the entangler
dots into the detector dots, spectrally broadened by the
coupling to the leads.
To arrive at the result in Eq. (1), we focus on the

experimentally relevant regime where the specific dot-
dependent part (� in α; β) of the Coulomb interactions
between detector dots at A and B, Uαβ, as well as between
entangler and detector dots, U1α etc., is negligibly small
compared to the relevant energy level differences in
ΔEαβ;ΔEβα. At two-particle resonance, this regime implies
ϵα ≈ ϵA, ϵβ ≈ ϵB and thus ΔEαβ ¼ ΔEAB;ΔEβα ¼ ΔEBA,
independent of α; β (see Fig. 1). In addition, we consider
the single-particle tunneling amplitudes to be tuned to

fulfill the relation jtAþ1=tA−1j ¼ jtA−2=tAþ2j. Under these
conditions, with Eq. (3), one can write the state in the
detector dots,

jψidot¼ðSA⊗SBÞjψient; Si¼
�
sinθi cosθi
cosθi −sinθi

�
; ð4Þ

with Si the scattering matrix for the effective beam splitter
at detector i ¼ A;B; see Fig. 2. Here we have intro-
duced the parametrization of the tunneling amplitudes
tAþ1 ¼ tA1 cos θA, tA−1 ¼ tA1 sin θA, etc., with jtA1j2 ¼
jtAþ1j2 þ jtA−1j2, etc. Moreover, we can directly identify
c12 ¼ tA1tB2=ΔEAB and c21 ¼ tA2tB1=ΔEBA in Eq. (1).
Importantly, Eq. (4) verifies the claim that the cotunneling
from the entangler to the detector dots can be described as
an emission of an entangled state, jψient, locally rotated in
orbital space before arriving to the detector dots.
Detection of the entanglement of jψient can be performed

by transport measurements. In the high-bias regime con-
sidered, the full transport statistics of the entangler-detector
system can be described within the framework of a
Markovian quantum master equation dρ=dt ¼ Lχ ½ρ� for
the reduced density operator ρ, with the Liouvillian super-
operator [46–48]

Lχ ½ρ� ¼ −
i
ℏ
½HS; ρ� þ

X
γ

�
ΓγðfγD−χγ ½d†γ ; ρ�

þ ð1 − fγÞDχγ ½dγ; ρ�Þ þ
Γφ

2
D0½d†γdγ; ρ�

�
; ð5Þ

where HS is the Hamiltonian of the dot system, fγ is the
lead Fermi function with fγ ¼ 1 (0) for γ ¼ 1; 2 (α; β),
Dχ ½L; ρ� ¼ eiχLρL† − 1

2
fL†L; ρg is the dissipator, and χγ is

a counting field for lead γ. The last term in Eq. (5) describes
dephasing with a rate Γφ independent of γ.
The cumulant generating function Fχ is obtained as the

eigenvalue of Lχ fulfilling the condition limχ→0Fχ → 0. To
leading order in the tunneling amplitudes tβα21, we find

Fχ ¼
X
αβ

ðeiðχαþχβ−χ1−χ2Þ − 1ÞPαβ; ð6Þ

where the transfer rates Pαβ are given by

Pαβ ¼
jtβα21j2ðΓα þ Γβ þ ΓφÞ

ℏ2
4
ðΓα þ Γβ þ ΓφÞ2 þ ϵ212αβ

; ð7Þ

with ϵ12αβ ≡ ϵα þ ϵβ þUαβ − ½ϵ1 þ ϵ2 þU12� the energy
away from two-particle resonance. The generating function
Fχ in Eq. (6), a sum of terms Pαβðeiðχαþχβ−χ1−χ2Þ − 1Þ, gives
a physically clear picture of the full transport statistics:
there are four independent, elementary events of electron
pair transfer from the entangler leads 1,2 to the detector
leads α and β with rates Pαβ=ℏ.
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To formulate a BI test in terms of transport quantities, we
consider either the dephasing-broadened regime, where
Γφ ≫ Γα;Γβ, or the situation where Γα;Γβ are independent
of the specific dot (� in α; β). In both cases, Pαβ ∝ jtβα21j2,
with a proportionality constant independent of α; β. This
allows us to identify, directly from Eq. (6), Pαβ=

P
αβPαβ as

the probability that a pair of electrons emitted from E is
jointly detected, with one electron in lead α and one in β.
Based on these joint detection probabilities, we can directly
formulate a BI [19] along the lines of Ref. [49] as

S ¼ jEAB − EA0B þ EAB0 þ EA0B0 j ≤ 2; ð8Þ

with the correlation functions EAB ¼ ðPAþBþ − PAþB− −
PA−Bþ þ PA−B−Þ=ðPAþBþ þ PAþB− þ PA−Bþ þ PA−B−Þ
and where A; A0; B; B0 denote different detector settings,
i.e., different single-particle tunneling amplitudes.
Importantly, the rates Pαβ can be obtained from the current
cross-correlation Sαβ ¼ e2ð∂2Fχ=∂iχα∂iχβÞjχ¼0 ¼ e2Pαβ,
allowing for an experimental test of entanglement via a
violation of the BI. We note that for the state jψient, the
maximal Bell parameter is Smax ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2 θ

p
[19],

where θ ¼ 2 arctanðc12=c21Þ; i.e., all entangled states can
in principle be detected by a BI violation.
Beyond being insensitive to decoherence, does our setup

offer any additional advantages, not present in existing
proposals? The answer is yes. By tuning the detector
tunneling barriers such that the rates Γα, Γβ become small,
typically in the sub-MHz range, the tunneling on and off the
detector dots can be monitored in real time, via, e.g., time-
dependent electrical currents flowing through quantum
point contacts capacitively coupled to the dots (not shown
in Fig. 1) [50–52]. In particular, by simultaneously
detecting the charge transfers at dots α and β, as demon-
strated in Ref. [43], one can identify the coincidence
probabilities for individual, emitted pairs arriving at the
detector dots or leads. This provides for an entanglement
test based on a violation of a BI formulated in terms of
short-time joint detection probabilities, in direct analogy to
quantum optics.
Theoretically, the short-time properties of the correlated

charge transfer can be described by the electronic analogue
[53] of Glauber’s second degree of coherence [54] in
quantum optics,

gð2Þαβ ðτÞ ¼
hhJαΩðτÞJβii þ hhJβΩðτÞJαii

2hhJαiihhJβii
; ð9Þ

where hhAii is the stationary expectation value of operator
A, ΩðτÞ ¼ eL0τ is the master equation propagator, and
Jγ ¼ ∂iχγLχ jχ¼0 is the current superoperator at lead
γ ¼ α; β. We note that the Liouvillian Lχ is given by
Eq. (5) and that, by definition, ehhJαii ¼ Iα. To leading
order in tβα21, we obtain

gð2Þαβ ðτÞ ¼ Pαβ
ΓαΓβ

Γα þ Γβ

e2

2IαIβ
ðe−Γατ þ e−ΓβτÞ: ð10Þ

Several important conclusions can be drawn from

this result. First, gð2Þαβ ðτÞ ≫ 1 for all times τ ≲ 1=Γα; 1=Γβ

[terms in gð2Þαβ ðτÞ of order unity are neglected], a typical
signature for pair transport [55]. Second, the decay time
scales of the correlations, 1=Γα; 1=Γβ, are set by the

tunneling times out of the dots α and β. Third, gð2Þαβ ðτÞ
by construction describes the correlations between elec-
trons arriving at the leads α; β, i.e., tunneling out of the
corresponding dots α; β. To obtain the probabilities that two
electrons arrive coincidentally at the detector dots α and β,

we have to integrate gð2Þαβ ðτÞ over all times, i.e., accounting
for all possible emissions from the dots to the leads. This
gives the quantity (not normalized with currents)

2IαIβ

Z∞

0

dτgð2Þαβ ðτÞ ¼ e2Pαβ; ð11Þ

which thus gives the same probabilities Pαβ=
P

αβPαβ as in
the long-time limit, Eqs. (6) and (7), producing a consistent
theoretical picture of the charge transfer.
Interestingly, in contrast to charge detection via long-

time current correlations, real-time detection of coincident
probabilities has typically nonideal efficiencies, ηα; ηβ < 1.
The efficiency at A is given by ηα ¼ e−Γα=Δω (and similarly
at B), where Δω is the bandwidth of the detector. Based on
existing experiments, near-unity efficiency of the detection
requires Γα;Γβ well below 1 MHz [50–52].
In conclusion, we have proposed a quantum-dot-based

entangler-detector system that generates and detects orbi-
tally entangled electrons on a time scale much shorter than
the decoherence time. The main idea is to use cotunneling
for both the entangling and state manipulation during the
transfer to the detectors. Recent experimental demonstra-
tions of highly controllable multiple quantum dots systems
[56–58], together with existing short-time charge detection
techniques [50–52], make the realization of our scheme
within experimental reach.

We acknowledge support from the Swedish Research
Council.
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