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When fast cracks become unstable to microscopic branching (microbranching), fracture no longer
occurs in an effective 2D medium. We follow in-plane crack front dynamics via real-time measurements in
brittle gels as microbranching unfolds and progresses. We first show that spatially local energy balance
quantitatively describes crack dynamics, even when translational invariance is badly broken. Furthermore,
our results explain microbranch dynamics; why microbranches form along spatially localized chains and
how finite-time formation of cusps along the crack front leads to their death.
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Although fracture mechanics is a mature field, many of
its simplest questions remain unanswered. Cracks govern
material stability. The classic 2D descriptions of fracture
[1] show that the existence of a crack focuses elastic
energy stored in a strained material into a single point—
the crack tip. There, stresses diverge as σ ∼ K=

ffiffiffi
r

p
, where

r is the distance from the tip and K is a coefficient called
the stress intensity factor. The motion of the crack is then
governed by the physical demand of energy balance, that
G, the elastic energy flowing to the crack tip, equals the
fracture energy Γ (the energy dissipated per unit area of
crack extension). For example, a sudden increase in Γ
will cause a corresponding decrease in crack velocity,
since part of the elastic energy that is used to separate the
crack faces is now used to compensate for the increase in
fracture energy. Energy balance is the basis for the
continuum description of the dynamics of simple, straight
cracks in brittle materials.
Cracks, however, fracture 3D materials. Whereas a

crack’s tip in 2D materials is a singular point, in three
dimensions the leading edge of a crack forms a singular
line, the crack front. In “simple” cracks, the crack front is a
straight line with no overt dynamics. For this reason, 2D
descriptions of fracture dynamics for simple cracks are
sufficient and the classical 2D theory delineated above [1]
describes crack dynamics perfectly [2–4], as long as they
propagate along a straight-line trajectory.
Simple cracks are generically unstable entities [5] that

leave complex 3D surfaces in their wake [6–9]. Their
intrinsic 3D character calls for a study of the dynamics of
crack fronts [10–14]. Even when a crack is constrained to a
plane, the geometry of the crack front is important. For
example, the advance of quasistatic fronts in patterned
materials is influenced by the long-range elastic forces that
act along crack fronts [15–17]. A recent study [18] of
quasistatic peeling of adhesive tape demonstrates the
striking consequences of manipulating front geometry to
enhance material toughness. The elasticity of crack fronts is
also important to explain the fluctuating dynamics of

quasistatic planar cracks propagating through random
heterogeneities [19–21].
When cracks are rapid, experiments suggest [22] that

distortions of a crack front produce inertia in the “massless”
cracks described by 2D theory, an intrinsic 3D effect.
The microbranching instability of rapid simple cracks is an
example where a crack front loses its symmetry dynami-
cally. Simple cracks in brittle materials experience this
instability above a critical crack velocity vc ∼ 0.3cR,
where cR is the material’s Rayleigh wave speed
[5,22,23]. For velocities v > vc, directed chains (branch
lines) of micron-scale branched cracks are spontaneously
generated [see Fig. 1(b)]. Each “microbranch” branches
away from the main crack to propagate beneath its fracture

(a)

(b) (c)

FIG. 1 (color online). (a) The experimental setup. A rectangular
block of polyacrylamide gel is strained by displacement of its Y
boundaries. Crack fronts, propagating within the sample’s mid-
plane are visualized via shadowgraph with a high-speed camera;
illumination is via collimated LED light normal to the fracture
(XZ) plane. (b) A post-mortem fracture surface section containing
four nearly parallel directed chains of microbranches (branch
lines). (c) Top: The imaged fronts that formed the branch line
denoted by the box in (b). Bottom: A close-up photograph of the
corresponding fracture surface with overlaid edge-detected fronts.
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surface. Every microbranch creates an additional fracture
surface and hence, increases the value of Γ that is felt by
the main crack [24]. As, for short times, the total energy
flux to the crack front is constant, microbranching also
reduces the energy flux to the rest of the crack. A single
microbranch may effectively increase Γ by up to 100%
(if it creates an additional crack propagating parallel to the
main crack). One may therefore consider microbranches as
energy sinks that are dynamically “toggled” on and off. As
microbranches are localized along the crack front, these
perturbations are spatially localized in both parallel and
transverse to the propagation direction. Therefore, when
excited, microbranches locally perturb initially straight
crack fronts to produce large fluctuations in v.
In this Letter, we study the propagation of fast crack

fronts during the microbranching instability. We will
provide a detailed account of in-plane front dynamics as
microbranches nucleate, grow, and eventually die. This will
provide us with new insights as to how front geometry and
motion continuously feed each other, eventually conspiring
to cause microbranch “death.”
We study crack front dynamics by performing real-time

visualization of the fronts as they traverse the fracture
surface. We do this by using brittle polyacrylamide
gels composed of a 13.8% (w/v) of acrylamide and a
1:37.5 (w/w) bisacrylamide-to-acrylamide ratio, where
cR ¼ 5.2 m=s. When scaled by cR, these gels exhibit both
the same single crack dynamics [4] and microbranching
phenomenology [23] as more conventional brittle materi-
als such as glass and PMMA. The advantage of using gels
is in reducing the wave speeds, hence crack velocities, by
3 orders of magnitude.
Our experimental system is schematically described in

Fig. 1(a). Our gel samples are cast to be rectangular blocks
of dimensions 50 × 60 × 6 mm3 (X × Y × Z), where X, Y,
and Z are, respectively, the propagation, loading, and
thickness directions. We image the crack front by shining
collimated LED light through the samples in a direction
normal to the XZ (fracture) plane. The strong curvature at
the crack tip deflects the light at the crack front, creating a
sharp shadow boundary in the image plane and producing a
2D projection of the crack front. We capture front dynamics
by imaging the front using high-speed (IDT-Y4) camera at
∼48000 frames= sec in a “X × Z” window of 10 × 1 mm2

located at the center section of the gel sample. Our spatial
resolution was ∼10 micron per pixel.
We generated crack front dynamics in the microbranch-

ing regime by displacing the system’s boundaries by a
10%–12% strain, prior to initiating fracture. Fracture was
initiated by inserting a small “seed” crack at the sample’s
edge, midway between its vertical boundaries. This pro-
cedure produced crack velocities of 0.1–0.5cR along the
midplane of the sample. All velocities vðzÞ referred to in
this Letter are the normal velocities to the front at each
point z.

In Fig. 1(b) we present a typical picture of the fracture
surface created. Crack propagation is complex, forming
microbranches at several locations along the front. The four
branch lines appearing in the figure are oriented parallel to
the mean crack velocity. To characterize the corresponding
front dynamics, we focus on the formation of a single
branch line, denoted by the dashed box in Fig. 1(b). In
Fig. 1(c) we present a series of snapshots of successive
crack fronts within this box, together with a close-up of the
resulting post-mortem branch line formed by these fronts.
A direct comparison between the fronts and resulting
fracture surface [Fig. 1(c), bottom] shows that a one-to-
one correspondence exists between microbranches on the
fracture surface and loci of high curvature along the front.
Figure 2 presents a detailed picture of the motion within

a typical section of a front that includes three well-defined
microbranching events. Along the crest of a single branch
line markedAwe can see that, prior to the nucleation of the
first microbranch (1) the front has nearly zero curvature.
Then, with the nucleation of the first microbranch (2) the
local front velocity along A gradually decreases. The
apparent cause for the slowing down is the effective
increase in local fracture energy due to the incipient
microbranching. The resulting gradient in velocity along
the front produces an increase of front curvature. The front
acquires a locally concave shape that becomes more and
more pronounced until (3) the curvature suddenly drops as
the local velocity peaks to ∼100% above the mean front
velocity. Examination of the fracture surface suggests
that the release of curvature and the velocity jump are
coincident with the death of the microbranch.
Immediately afterwards (4) the velocity drops again as
a new microbranch nucleates. In contrast to the strong
fluctuations along A, the “quiet” adjacent mirrorlike
region [25] marked B shows practically no change in
curvature. We do, however, see significant variations
in velocity which, after a delay, follow the changes in
velocity along the branch line A.
Let us consider these results. First, the association of

microbranch nucleation and death with local velocity
decrease and increase along the branch line is qualita-
tively consistent with local energy balance: G ¼ Γ. Our
second observation is that after the front acquires curva-
ture and the microbranch dies, the local velocity does not
only return to the mean velocity level, but doubles it.
These observations suggest that front curvature must be
increasing G locally to produce these high velocity peaks.
This idea is supported by a well-known result derived by
Rice [26] for static fronts. Rice computed the static
stress contribution made by a small in-plane perturbation
to a straight front. When a front x ¼ x0 þ δxðzÞ is
perturbed in the sense that jdx=dzj ≪ 1, the stress main-
tains the inverse-square-root singularity at each point
along the front, but K ¼ K0 þ δKðzÞ varies along the
front as
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δKðzÞ
K0

¼ 1

2π
PV

Z
δxðz0Þ − δxðzÞ

ðz0 − zÞ2 dz0; ð1Þ

where xz is the fracture plane, x is the crack propagation
direction, and the unperturbed front is xðzÞ ¼ x0 with a
stress intensity factor K0. A salient feature of this integral
is that it is solely determined by the front geometry.
It generates a stabilizing force (“line tension”) that tends
to restore the front to a flat configuration, since G ∝ K2 or
δG=G0 ¼ 2δK=K0. This force is countered by the local
increase of the fracture energy δΓðzÞ, generated by the
microbranch. In general, we cannot measure δΓ directly.
When, however, a microbranch “dies,” δΓ ∼ 0 and the
elastic energy stored in the front curvature locally accel-
erates the crack. Evidence for this is seen in Fig. 2(b)
along theA line, where we see that each peak in curvature
is followed by a peak in local front velocity as the line
tension is released.
While these statements appear qualitatively accurate, are

they quantitatively correct? Let us now focus on the
moment of microbranch death, the moments corresponding
to the peak in local front velocity at the instant where
δΓ ∼ 0. We consider thirteen cases, with mean crack
velocities ranging between 0.1–0.3cR, where we identify
a clear transition from a branched to smooth surface in the
post-mortem image.

At these instances we can directly compare the relative
velocity deviation from the mean δvðzÞ ¼ vðzÞ − hvðzÞi
and the built-up energy release rate δG=G0 ¼ 2δKðzÞ=K0

computed by Eq. (1). As Eq. (1) was derived for fronts
parallel to the z axis, we computed δK=K0 over symmetric
regions of the front around the point of maximum curvature
by first rotating the front to make edges of this region sit on
an x ¼ const line. The average hvðzÞi was computed for
velocity values in the same region.
The result of the comparison is presented in Fig. 3. We

see that the correction for the stress intensity factor given by
Eq. (1) is clearly correlated with the instantaneous velocity
profile at the moment of microbranch death. Despite being
only a first-order correction, Eq. (1) is shown here to work
quite well. This is demonstrated locally along a typical
front in Fig. 3(a) and in another twelve similar instances in
Fig. 3(b). It is a manifest demonstration of how front
curvature is translated into motion. We note that we see no
observable effect of the proximity of neighboring branch
lines in this collapse. This is consistent with the observa-
tions of Ref. [27] in quasistatic propagation. Since we
compare here a dimensionless quantity with velocity
δv ¼ 2v0δK=K0, the coefficient of proportionality v0 must
also have the dimensions of velocity. Its values v0 ¼ 1�
0.3 m=s are far from the characteristic wave velocity
(cR ∼ 5 m=s), but close to the measured mean crack
velocities hvi ¼ 0.7–1.5 m=s. This might be related to
the strong velocity dependence of the fracture energy in
polyacrylamide gels [4]. We give a possible origin of this
coefficient in the Supplemental Material [28,29].
Let us now consider the front evolution depicted in

Fig. 4, where the process leading to the buildup of the line
tension prior to the death of a microbranch is highlighted.
During the buildup of the line tension, v along the crest of
the branch line is approximately constant during the rapid

(a)

(b)
(c)

FIG. 2 (color online). Three consecutive branching events
along a branch line. (a) The series of fronts captured during
branch-line formation. Colors indicate local velocity levels.
Marked points show (1) an unperturbed front, (2) local velocity
decrease associated with microbranch nucleation, (3) maximum
local curvature, and (4) formation of a new microbranch. (b) Plots
of local curvature (top) and local velocity (bottom) along the cuts
A (dots) and B (open symbols) in (a). (c) The corresponding post
mortem showing the branch line associated with the fronts in (a).

(a) (b)

FIG. 3 (color online). Comparison of the instantaneous velocity
and local stress intensity factor, computed by Eq. (1), along a
front at the moment of microbranch death. (a) Spatial stress (dots)
and velocity variations (open circles) for the front in the inset are
well correlated. (inset) Overlay of the front at the moment of
maximal velocity on the resulting post-mortem fracture surface.
Front positioning is approximate. (b) δvðzÞ vs δG=G0 ¼ 2δK=K0

for both the data in (a) and twelve such releases from other events.
Different colors indicate different events. The dashed y ¼ x line
is a guide to the eye.
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increase in curvature that leads to cusp formation. In Fig. 4(a)
we present a series of fronts leading to a release event. The
release is preceded by a rapid increase in curvature which
culminates when the front attains a cusplike form. As in the
events depicted in Fig. 2, local increases in v immediately
follow cusp formation.
It is well known that propagating fronts may develop

shocks in curvature [30], or cusps. If a cusp does form, we
would expect the stress intensity factor to locally diverge
according to Eq. (1). It is, therefore, likely that this high
stress could promote the death of the microbranch and
hence trigger the local release of a front.
How can this picture be tested? A nearly constant normal

velocity, vðz; tÞ ¼ vn, where vn is taken to be the initial
velocity at the beginning of the event, coupled with an
initially curved section of the front will spontaneously
produce a cusp with no further assumptions. To see this,
we rewrite v ¼ vn in terms of front coordinates: ∂tx ¼
vn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂zxÞ2

p
. Differentiating by z, we obtain an equation

of motion for the local slope u ¼ −∂zx:

∂u
∂t þ vn

uffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p ∂u
∂z ¼ 0: ð2Þ

It is known that this equation develops shocks (i.e., cusps in
u) in finite time, where ∂2

zx ¼ −∂zu ∼ ðt� − tÞ−1 and
t� ¼ 1=ðκ0vnÞ when κ0 is the maximal front curvature
at t ¼ 0.
The constant velocity model provides us with a pre-

diction for the time required for the front to form a cusp t�.
Is this time scale related to the lifetime τ of a micro-
branching event? To test this, we consider an ensemble of
microbranching events. As depicted in Fig. 4(b), we define
τ as the time between the initial stress buildup and stress
release points for each event, using a threshold of δK=
K0 ¼ 0.3 to define these points. We use the initial maximal
curvature κ0 and the normal velocity vn to evaluate the
predicted cusp formation time t�. (We measure κ0 by
rotating the front to eliminate any mean slope and fitting
the region of highest curvature with a parabola. vn is the
average normal velocity over the same range in z.) We
consider only events where the estimated error in t� was no
larger than 50%.
As shown in Fig. 4(c) this simplistic model works rather

well. Within the limits of our experimental resolution
τ≃ t�; over the stress buildup we observe rapid growth
of curvature that culminates near the predicted t�.
Moreover, our predicted t� indeed correspond to the death
of each microbranch.
This being said, microbranch dynamics do not always

proceed directly to curvature blowup. In some cases the
front may “slip”; undergoing partial release during an event
before final cusp formation. An example of such slip is the
curve denoted by open symbols in the inset of Fig. 4(c).
In conclusion, we have presented the first experimental

exploration of rapid crack front in-plane dynamics. Our
observation that microbranches act as sinks that effectively
increase the fracture energy agrees qualitatively with a local
energy balance. The induced front curvature may explain
the microbranch localization in z as the velocity overshoots
upon microbranch release appear to generate new micro-
branches, thereby forming branch lines. Moreover, we have
shown that the pronounced velocity overshoot at the
moment of microbranch death is well correlated with the
static contribution for the stress intensity factor resulting
from front curvature. This is a clear demonstration of how
stresses distributed along a crack front translate locally into
dynamics.
Nevertheless, the demonstrated validity of the expression

[Eq. (1)] is intriguing for several reasons. First, Eq. (1) is a
first-order correction in the local slope of the front, while
the fronts we considered contained mild slopes. Our current
data do not have the precision to investigate the effects of
higher order corrections [31–33] and it would be interesting
to test their implications in the future. Second, Eq. (1) was
derived for static fronts while we consider moving fronts. In
the work of Ramanathan and Fisher [10] the static theory
was expanded to include dynamic effects. These include
waves that propagate on the front at velocity ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2R − v2

p
.

FIG. 4 (color online). (a) Cusp formation during a typical
microbranching event. We present every second front. Red
arrows denote normal displacements. (b) Time series of the peak
value δK=K0 (top) and front velocity (bottom) along the crest of a
branch line show a few cycles of buildup and release. We define
the microbranch lifetime τ by the interval over which δK=K0 first
surpasses (microbranch birth) and then drops below (microbranch
death) a threshold value 0.3 (red line). Note that during stress
buildup, the local velocity stays approximately constant. Shaded
areas: 3 examples of τ for different branching events. (c) τ
compared to predicted cusp formation times t� ¼ 1=ðκ0vnÞ. κ0 is
the initial maximal curvature and vn is the initial normal velocity
at the location of maximum curvature. Colored points denote
events in (b) and those shown in the inset. (inset) Curvature
blowup dynamics. Time is normalized by t�. t ¼ 0 corresponds to
the initial front. κ is the maximal curvature of each successive
front normalized by κ0. Black dashed line: predicted finite-time
blowup.
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Since in our experiments v2=c2R ∼ 0.1 ≪ 1 and because of
the small size of microbranches (∼100 μ) and relatively
long lifetime (∼100 μs), we expect any signature of the
waves to average during microbranch growth. We might
expect the agreement with Eq. (1) to break down at larger
v=cR, when such inertial effects become important. Last,
apart from the increase in fracture area caused by the out-
of-plane motions of the front, microbranches should also
influence the local energy release rate by introducing
shearing stresses. The combined effects of these contribu-
tions on dynamics demand further study.
In addition, while recent experiments [34] provide a

mechanism for microbranch birth, we have seen that the
front dynamics induced by this “birth” could lead to
eventual microbranch death; front curvature caused by
microbranch initiation may lead to microbranch death
via the large line tension generated by dynamic cusp
formation. This scenario could provide a key to under-
standing why microbranches remain small and do not
develop. The above results are all purely 3D effects that
underline the necessity of extending fracture mechanics to
the third dimension.
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