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A novel thermodynamically consistent lattice Boltzmann model that enables dynamical effects of
two-phase fluids is developed. The key innovation is the application of the entropic lattice Boltzmann
stabilization mechanism to control the dynamics at the liquid-vapor interface. This allows us to present a
number of simulations of colliding droplets, including complex phenomena such as the formation of a
stable lamella film. Excellent agreement of the simulation with recent experiments demonstrates the
viability of the present approach to simulation of complex dynamic phenomena of multiphase fluids.
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Multiphase fluid flows are ubiquitous in science and
technology and have received considerable attention [1].
The interplay between the interface dynamics and the
surrounding fluid motion is subtle, with factors such as
density and temperature jumps across the interface, surface-
tension effects, topological connectivity, and boundary
conditions playing a significant role in the dynamics [2].
While experimental studies of multiphase phenomena are
greatly improving [3], the existing computational methods
remain hindered by complex implementations and lack
of tools to accurately describe the physical phenomenon
behind multiphase flows. Conventional methods of simu-
lating multiphase flows based on continuum mechanics
equations or molecular dynamics lack either thermody-
namic consistency or computational efficiency or both, and
hence cannot be used as reliable tools to advance this
complex field. Apart from computational cost, such tech-
niques require complex implementations (grid refinement,
etc.) even for the simplest cases [4,5].
Recently, the mesoscopic lattice Boltzmann method

followed a much different path to complex flow phe-
nomena [6]. It is thus not surprising that LB methods
were advocated as a possible alternative for the simu-
lation of fluids undergoing phase transition by a number
of authors [7,8]. However, LB methods still suffer
from substantial drawbacks such as restriction on the
kinematic viscosity, interface thickness, low density ratio
between the liquid and vapor phases, and others. In spite
of a number of refinements (see review, e.g., [9,10] and
references therein), existing LB formulations for the
multiphase flows are still unable to address complex
dynamical effects, such as droplet collisions, in a
quantitative fashion. Moreover, many of the attempts
at improving the performance of multiphase models were
concentrated around simplifying existing approaches by
sacrificing the physics of the model [11,12] or resorting
to improvements on Shan-Chen type models, where one
cannot introduce temperature that is consistent with
thermodynamics [7,13–15].

In this Letter, we propose a novel thermodynamically
consistent lattice Boltzmann model for two-phase flow
simulations free of the above limitations. Key is the use of
the entropic lattice Boltzmann method (ELBM), together
with the optimal choice of the equation of state. A number
of results on droplet collisions are presented and compared
with experimental data, including a complex lamella
film stabilization. Our results demonstrate that the novel
formulation is suitable for realistic multiphase studies.
The classical capillarity theory, for multiphase flows, by

van der Waals [16] and Korteweg [17] (see, e.g., [18] and
references therein) is followed below. The free-energy
functional is composed of a bulk free energy, Ψ, and an
excess free energy stored at the liquid-vapor interface,

F ¼
Z �

ΨðρÞ þ κ

2
j∇ρj2

�
dx; ð1Þ

where κ is the surface tension coefficient and ρ is the local
density. Equation (1) implies Korteweg’s stress [17],

P ¼
�
p − κρ∇2ρ −

κ

2
j∇ρj2

�
I þ κð∇ρÞ ⊗ ð∇ρÞ; ð2Þ

where p is the equation of state (EOS), p¼ ρðdΨ=dρÞ−Ψ,
and I is the unit tensor. Implementation of Korteweg’s
stress (2) in the lattice Boltzmann setting, the so-called free-
energy LB model, was first suggested by Swift, Osborn,
and Yeomans [8], and refined by Wagner and Li [19].
In the forcing method of implementation of multiphase
models, the local flow velocity is altered by an amount
δu ¼ ðF=ρÞδt, where δt ¼ 1 is the lattice time step, and F
is the force related to Korteweg’s stress,

F ¼ ∇ · ðρc2s I − PÞ; ð3Þ

where c2s is the lattice speed of sound. However, existing
realizations do not allow for significant density ratios
between liquid and vapor phases, small kinematic viscosity,
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and are unstable for simulation of droplet dynamics. Hence,
a reformulation is required.
The major restyling here is to use the entropic lattice

Boltzmann method (ELBM) [20],

fiðxþ vi; tþ 1Þ − fiðx; tÞ ¼ αβ½feqi ðρ;uÞ− fiðx; tÞ�
þ ½feqi ðρ;uþ δuÞ− feqi ðρ;uÞ�;

ð4Þ

where 0 < β < 1 is a parameter related to the kinematic
viscosity, ν ¼ μ=ρ ¼ ðβ−1 − 1Þc2s=2 and strictly following
the free energy formulation of the multiphase models that
ensure thermodynamic consistency. The equilibrium feq is
the minimizer of the discrete entropy function H under the
constraints of local conservation laws of mass and momen-
tum, fρ; ρug ¼ P

if1; vigffeqi g, where

H ¼
X
i

fi lnðfi=WiÞ; ð5Þ

with Wi the lattice-specific weights. For the sake of
computational efficiency, it suffices to use the expansion
of the minimization problem to order u3,

feqi ¼ ρWi

�
1þ viαuα

c2s
þ uαuβ

2c4s
ðviαviβ − c2sδαβÞ

þ uαuβuγ
6c6s

viγðviαviβ − 3c2sδαβÞ
�
: ð6Þ

A key point is the parameter α in Eq. (4) that maintains
the entropy balance in the relaxation step at each node, and
is available as the nontrivial root of the equation,

H½f þ αðfeq − fÞ� ¼ HðfÞ: ð7Þ

The last term on the right-hand side of Eq. (4) is a specific
realization of the forcing (in the ELBM setting, it was used
in [21] for gravity force).
To this end, the difference from the standard LB models

for the two-phase flow is the ELBM relaxation [α is
computed from the entropy balance (7), as opposed to
taking the fixed value α ¼ 2]. Originally, ELBM was
conceived for the stabilization of high Reynolds number
flow simulations to handle large velocity gradients. There,
fluctuations of α around α ¼ 2 due to the entropy estimate
Eq. (7) acts as a built-in turbulence model. However, in
multiphase flows, ELBM stabilizes the simulation through
control of spurious currents arising from the transport of the
fictitious “molecules” that carry net momentum across the
interface (unlike real molecules, which achieve equilibrium
through fluctuations across the interface without carrying
net momentum) [22,23]. Also, ELBM maintains the large
density gradients present in a multiphase flow, for example,
near a liquid vapor interface, which otherwise are a major
source of instabilities. This problem was partially averted

by introducing diffuse interfaces [24]; however, this is not a
viable solution for flows with a large number of droplets or
flows with small droplet sizes.
Finally, it remains to specify the EOS p. To that end, we

use a polynomial equation of state so chosen as to match
the Peng-Robinson (PR) equation of state [25]. Polynomial
equation of states have long been used in the literature as an
alternative to the realistic equation of states which are a fit
of the experimental data in different regimes.

p ¼ ρRGTð1þ bρχÞ − aρ2; ð8Þ

where χ is the density-dependent collision probability [26],
considered here as a polynomial in density,
χ ¼ P

4
k¼0 Akρ

k, where, in turn, functions Ak are a poly-
nomials of the temperature, Ak ¼

P
6
n¼0 aknT

n. Numerical
values of the coefficients in these polynomials are given in
the Supplemental Material [27] along with implementation
details. In the simulations we set a ¼ 9=49, b ¼ 2=21 and
RG ¼ 1. We note that, restoring to an EOS of a polynomial
form proves advantageous with respect to the nonpolyno-
mial PR EOS, since it avoids singularities, and greatly
improves the performance of the present model.
Simulations were performed using the standard 19-

velocity lattice, c2s ¼ 1=3, and weights Wi can be found
in the Supplemental Material [27]. The thermodynamic
consistency of the present model was validated numerically
by simulating the coexistence curve as shown in Fig. 1. It
can be seen that the densities of the liquid and vapor phases
in the simulation agree well with the values predicted
by Maxwell’s equal area rule. The maximal density ratio
r ¼ ρl=ρv of the liquid and vapor phases achieved in these
simulations was r > 800. Free energy models, by con-
struction, allow the surface tension of the liquid-vapor
interface to be controlled independently of the grid size and
the viscosity. This is demonstrated in Fig. 2, where it is
shown that by changing the surface tension coefficient κ we
obtain the value of the surface tension independent of the

FIG. 1 (color online). The coexistence curve. Symbol: ELBM
simulation; Line: Maxwell’s equal area rule.
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viscosity. It is evident that the pressure difference between
the liquid and vapor phases in a droplet is inversely
proportional to the radius of the droplet (Laplace’s law,
ΔP ¼ σ=R, where σ is the surface tension). In addition to
that, we observed that the magnitude of spurious currents
in the vicinity of the droplet does not scale with the
kinematic viscosity, and was maintained at ∼10−3–10−2
(grid units) in a range of low kinematic viscosity
ν ∼ 10−2–10−4. Thus, the typical spurious currents in the
present ELBM realization are more than an order of
magnitude smaller than the typical velocity of the liquid
U ∼ 0.1. The problem of spurious currents together with
low density ratios restricted the application of free energy
models to stationary droplets suspended in vapor or sitting
on a surface. However, the present model easily overcomes
these problems and can be extended to study dynamical
effects such as droplet collisions. It must be mentioned that
the standard LBGK model goes unstable at fluid viscosities
below ν ¼ 1.5 × 10−2, while the entropic LBM remains
stable beyond ν < 10−5 for the same lattice. The droplet
collision phenomenon leads to many interesting stability
and topological configurations. Droplet collisions are con-
trolled primarily by the Reynolds number Re, the Weber
number We, and the impact parameter γ, Re ¼ UD−=νl,
We ¼ ρlU2D−=σ, γ ¼ 2B=ðD− þDþÞ, with D− and Dþ
the diameters of the smaller and of the larger droplets,U the
relative velocity at impact, B the offset between the droplet
centers, and νl the viscosity of the liquid phase. Figure 3
shows various configurations during a collision of equal
sized droplets separated by a small offset. Excellent agree-
ment is obtained by the current model with respect to the
experiments of Qian and Law [28]. In Fig. 4 experimental
and present simulation snapshots at various stages of
collision of unequal sized droplets are compared. The
experiments of Tang, Zhang, and Law [29] captured

the shapes in a head-on collision, which compare very
well with the present simulations. Grid sizes for these
simulations are 150 × 150 × 150 and 245 × 105 × 105,
respectively.
In order to illustrate the significance of the ELBM

formulation, we show a snapshot of the computed relax-
ation parameter α at a particular instance of droplets
collision (see Fig. 2 in the Supplemental Material [27]).
As expected, significant deviation of α from α ¼ 2 is
observed at the interface only. This provides evidence that
the ELBM performs effective control at the interface. Even
though ELBM scheme comes at an added computational
cost in the form of the evaluation of entropy estimate
[solving Eq. (7) at each grid node], which for a typical
simulation is a factor 3 to 4 as compared to LBGK; the
saving in grid sizes (typically an order of magnitude smaller
grid resolution in each spacial dimension) makes the
computations extremely efficient.
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FIG. 2 (color online). Laplace’s law for various values of
viscosity and surface tension coefficient κ. As expected, with
the increasing κ, the surface tension σ increases independent of
the viscosity. The liquid and vapor densities are ρl ¼ 7.82,
ρv ¼ 0.071, respectively.

FIG. 3. Sequence of coalescence observed for binary collision
of equal size droplet at We ¼ 37.2, Re ¼ 228.0, γ ¼ 0.01, and
D ¼ 328 μm. Left: Experiment [28]. Right: Simulation.

FIG. 4 (color online). Comparison of the dynamics of a head-on
collision between two droplets of unequal size. Left: Experiment
[29]; Right: Simulation. We ¼ 17.6, Re ¼ 185.0, γ ¼ 0.0,
D− ¼ 100 μm, and Dþ ¼ 187 μm.
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Perhaps one of the most interesting droplet collision
experiments was performed by Willis and Orme [30].
When two equal sized droplets collide head-on, a very
thin film known as the lamella film is formed during the
deformation processes [30]. Depending on the Weber
number, the lamella can either remain attached to the
rim of the droplet or rupture and detach from it. Figure 5
shows snapshots at four nondimensional times t� ¼ tU=D
for the simulation of stable lamella (we do not show here
the initial stages of droplet collision like in Fig. 3).
Remarkably, the present model captures the thin lamella
film which is just two to three grid spacings thick.
Conventional methods for multiphase flows face severe
numerical constraints in simulating this problem due to
large grid requirements needed to resolve the thin film
formed. Moreover, inaccuracies in the grid refinement can
lead to oscillations in the flow field that rupture the lamella
film. The simplicity, efficiency, and accuracy of the present
model is well tested and demonstrated through these
comparisons. Figure 6 shows the comparison of the
maximum diameter of the merged droplets in both

experiments and present simulations. Excellent comparison
between experiment and simulation is evident.
The proposed model, however, is limited to isothermal

problems where the temperature dynamics are not consid-
ered; further extensions in the spirit of Ref. [31] are planned
for the future. Also, it must be mentioned that with the
limited resolution used here, very high We and Re number
applications such as high speed sprays are not yet possible.
To conclude, we have demonstrated that the proposed

modifications to the free-energy based lattice Boltzmann
models bring about a substantial increase in the operating
range of multiphase simulations. The new model proposed
drastically increases the liquid-vapor density ratio and
decreases the minimal viscosity in multiphase simulations.
Also, for the first time, accurate and reliable results were
obtained for nonstationary droplets using the free energy
formulation that assures thermodynamic consistency and
deep physical insights into the flow field. The entropic
lattice Boltzmann method was successfully employed to
achieve high Reynolds number and high Weber numbers
that are typical for two-phase applications. Further simu-
lations with new wall boundary conditions are underway
and will be reported elsewhere.
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FIG. 6 (color online). Comparison of the maximum radial
deformation measured from ELBM simulations (line) and
experimental data [30] (symbol) at We ¼ 269, Re ¼ 154,
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FIG. 5 (color online). Different stages of lamella stabilization
simulation at We ¼ 269 and Re ¼ 154. (a),(b): Expansion of the
lamella; (c),(d): Contraction of the lamella.
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