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Theoretical analysis of the optomechanics of degenerate bosonic atoms with a single feedback mirror
shows that self-structuring occurs only above an input threshold that is quantum mechanical in origin. This
threshold also implies a lower limit to the size (period) of patterns that can be produced in a condensate for
a given pump intensity. These thresholds are interpreted as due to the quantum rigidity of Bose-Einstein
condensates, which has no classical counterpart. Above the threshold, the condensate self-organizes into an
ordered supersolid state with a spatial period self-selected by optical diffraction.
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Self-organized patterns and structures that arise due to
the simultaneous presence of optical nonlinearity and
diffraction have been predicted and observed in a variety
of media, including hot atomic vapors, for a number of
years [1–5]. In the case of hot atomic vapors these
phenomena rely solely on the spatial modulation of the
internal states of the atoms (electronic or Zeeman states)
with their center-of-mass motion playing no significant
role. In cold atomic gases the additional presence of
optical dipole forces leads to density self-organization
and removes the requirement for an intrinsic optical non-
linearity. Wewill address the formation of a supersolid state
in a quantum degenerate atomic gas from spontaneous
symmetry breaking. The supersolid forms due to interac-
tion mediated by the optomechanical forces of the light
field and has a length scale determined by diffraction.
Previously, optomechanical nonlinearity has been shown to
give rise to collective atom-light interactions and instabil-
ities that have been given a variety of names, e.g., collective
atomic recoil lasing (CARL) [6–8] and superradiant
Rayleigh scattering [9–11], but have similar physical
characteristics to transversely pumped cavities, both with
cold thermal and quantum degenerate matter [12–18]. The
common feature of these schemes is a pump beam that is
scattered by the gas into an externally imposed mode (often
selected by a cavity). The interference between this mode
and the pump then provides a modulated light pattern,
which via dipole forces leads to a spatial rearrangement of
atoms. The emerging density gratings resulting from the
interference of this mode and the pump then provide
positive feedback by scattering photons into the self-
sustained mode. In these arrangements, the spatial scale
of the emerging structure is predetermined by the light
wavelength and the geometrical configuration. From the
photonics and quantum optics point of view, cold atomic

systems enable the prospect of very low thresholds [19–22]
offering the attractive prospect of all-optical control of
symmetry breaking at the single photon level [19].
Alternative and naturally multimode schemes are pos-

sible in cold atoms, where spatial organization emerges in
the plane transverse to the propagation of a single beam,
with self-selected scales. It is in fact expected that atomic
transport due to dipole forces can lead to nonlinear effects
in cold atoms analogous to the Kerr effect in the hot-atoms
case [23–25]. The study of transverse optomechanical
instabilities in cold atoms has until recently been limited
to the case where strong velocity damping is provided
by optical molasses [20,24,25]. A similar optomechanical
nonlinearity involving strong momentum damping is also
present in soft matter systems, e.g., suspensions of nano-
particles [26–29], but compared to soft matter systems cold
atoms have the advantage that the dynamics can be studied
without viscous damping of motion, allowing for a coher-
ent, dissipation-free evolution. Recently [30], it was dem-
onstrated that a system comprising a cold, thermal gas of
Rb atoms and a single feedback mirror could produce
spontaneous symmetry breaking resulting in hexagonal
optical and atomic density patterns due to an instability
arising from optical dipole forces in the absence of
momentum damping. The theoretical analysis of this
self-structuring process was described in Ref. [31] using
a model where the cold atomic gas is described as a
collisionless gas of classical particles.
Many recent studies of cold atom–light interactions have

involved atomic gases that are cooled to subrecoil temper-
atures, usually Bose-Einstein condensates (BECs) where a
classical model of the atom-light interaction is insufficient
and a quantum model, in which the delocalized atoms are
treated as a matter wave, has to be adopted. It has been
shown in studies of, e.g., CARL [9,32–34] that quantum
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effects can significantly change the nature of the atom-light
interaction due to the discrete nature of the momentum
exchange between the atoms and light. In addition, self-
induced dipole forces that result in optical Kerr-like mutual
self-focussing of copropagating optical and matter wave
beams were investigated theoretically in Ref. [23] and
CARL-induced self-focussing in a BEC was investigated
theoretically in Ref. [35]. In this Letter we demonstrate
that quantum effects can significantly affect the process
of optomechanical diffractive self-structuring observed in
Ref. [30] and described classically in Ref. [31]. In what
follows we present a quantum model of the pattern
formation or self-structuring process, highlight the specifi-
cally quantum features that result, and show that it can
be described as a transition to a supersolid state with a
self-selected spatial period.
The setup considered is shown schematically in Fig. 1,

where a BEC is illuminated by an optical beam that, after
passing through the gas, is reflected by a single feedback
mirror. The two far off-resonant, counterpropagating opti-
cal fields, represented by (F, B), produce an optical
potential that can be written as

VðxÞ ¼ ℏδ
2
sðx; tÞ ¼ ℏΓΔ

4
sðx; tÞ; ð1Þ

where δ ¼ ω − ωa is the field-atom detuning, ω and ωa are
the pump laser and atomic resonance frequencies, respec-
tively, Δ ¼ 2δ=Γ, Γ is the atomic transition linewidth,
s ¼ ðjFj2 þ jBj2Þ, and jF;Bj2 ¼ ð1=Δ2ÞðIF;B=IsatÞ are the
forward and backward field intensities scaled with respect
to the saturation intensity at detuning δ. It has been
assumed that Δ ≫ 1 and that consequently s ≪ 1 so that
the atoms remain in their ground state. In addition,
longitudinal grating effects due to interference between
the counterpropagating optical fields on the transverse
pattern formation process are neglected, as in
Refs. [30,31]. In previous studies of pattern formation in
Kerr media, e.g., Ref. [36], the effect of including longi-
tudinal grating effects on transverse pattern formation is
simply to reduce minimum thresholds typically by approx-
imately a factor of 2. Using Eq. (1), the Schrödinger
equation describing the evolution of the BEC wave
function in this potential can be written as

i
∂ψðx; tÞ

∂t ¼
�
−

ℏ
2M

∂2

∂x2 þ
δ

2
sðx; tÞ

�
ψðx; tÞ; ð2Þ

where M is the atomic mass and for simplicity we have
neglected atomic collisions, so that the atom-light coupling
is the dominant source of nonlinearity, and assumed an
untrapped BEC. Extensions of this model to cases where
both atom-light and atom-atom coupling (collisions) are
included, and where a trapping potential is included, will
be the subject of future extended studies. We consider a
transverse domain of length L so that ψðx; tÞ; F, and B are
periodic with period L. In this case it is possible to write
ψðx; tÞ; F, and B as

ψðx; tÞ ¼
X
n

cnðtÞeinkLx; ð3Þ

ðF;BÞðx; z; tÞ ¼
X
n

(Fnðz; tÞ; Bnðz; tÞ)einkLx; ð4Þ

where kL ¼ 2π=L is the wave number associated with the
transverse period or domain length L and n is an integer.
Substituting for ψðx; tÞ; Fðx; tÞ, and Bðx; tÞ in Eq. (2) using
Eqs. (3) and (4) results in

i
dcnðtÞ
dt

¼ ωrn2cn þ
δ

2

X
m;p

ðFmF�
p þ BmB�

pÞcn−mþp; ð5Þ

where the intrinsically quantum parameter ωr ¼ ℏk2L=2M
is the “recoil frequency” associated with wave number kL.
The evolution of the forward-propagating optical field in

the BEC is described by

∂Fðx; z; tÞ
∂z ¼ −i

b0
2ΔLz

jψðx; tÞj2Fðx; z; tÞ; ð6Þ

where b0 is the optical thickness of the BEC cloud at
resonance, Lz is the longitudinal thickness of the cloud,

Z
L

0

jψðx; tÞj2dx ¼ L;

and it has been assumed that the atomic gas is sufficiently
thin that diffraction within it can be neglected (thin medium
approximation). Substituting for ψ and F using Eqs. (3) and
(4), respectively, results in

∂Fnðz; tÞ
∂z ¼ −i

b0
2ΔLz

X
m;p

Fmcpc�p−nþm: ð7Þ

As the field propagates a distance 2d from the sample to
the mirror and back, optical diffraction plays a crucial
role by converting phase modulations to amplitude mod-
ulations and consequently optical dipole forces. The
relation between the forward and backward fields when
it leaves the BEC (where z ¼ Lz) is

FIG. 1 (color online). Schematic diagram of the single mirror
feedback scheme.
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Bnðz ¼ LzÞ ¼
ffiffiffiffi
R

p
Fnðz ¼ LzÞe−in2Θ; ð8Þ

where Θ ¼ k2Ld=k0 is the phase shift accumulated due
to propagation from the BEC to the mirror and back
when n ¼ 1.
The evolution of the system is therefore completely

described by Eqs. (5), (7), and (8).
Assuming that all spatially varying quantities (i.e., all

modes with index ≠ 0) are small fluctuations and retaining
only first-order terms in Eq. (5) we obtain

i
dcnðtÞ
dt

¼ ωrn2cn þ
δ

2
ðF0F�

−n þ B0B�
−n þ F�

0Fn þ B�
0BnÞ:
ð9Þ

The forward field evolution, described by Eq. (7), can
similarly be approximated by

∂Fnðz; tÞ
∂z ¼ −i

b0
2ΔLz

½F0ðz; tÞðc0c�n þ c�0cnÞ þ Fnðz; tÞ�;

ð10Þ
where n ≠ 0 and the fact that c0c�0 ¼ 1 (from normalization
of ψ) has been used. The spatially uniform component of
the field, F0, evolves according to

∂F0ðz; tÞ
∂z ¼ −i

b0
2ΔLz

F0ðz; tÞ;

which has the solution

F0ðz; tÞ ¼ F0ðz ¼ 0; tÞe−iðb0z=2ΔLzÞ

so Eq. (10) can be solved for FnðzÞ, giving

Fnðz ¼ LzÞ ¼ −i
b0
2Δ

F0ðLzÞðc0c�−n þ c�0cnÞ: ð11Þ

Substituting Fn and Bn into Eq. (9) using Eqs. (11) and (8),
respectively, gives

dcn
dt

¼ iωrn2cn þ i
b0p0Γ

4
sinðn2ΘÞðc0c�−n þ c�0cnÞ; ð12Þ

where p0 ¼ ð1=Δ2ÞðIpump=IsatÞ is the pump saturation
parameter. Looking for solutions ðc0c�−n þ c�0cnÞ ∝ eλt

results in the dispersion relation

λ2 þ ω2
rn4 −

n2ωrb0p0ΓR
2

sinðn2ΘÞ ¼ 0: ð13Þ

Note that in the continuous limit where nkL ≡ q is a
continuous wave number, then the dispersion relation in
Eq. (13) can be written as

λ2 þ ω2
rq −

ωrqb0p0ΓR
2

sinðq2d=k0Þ ¼ 0; ð14Þ

where ωrq ¼ ℏq2=2M is the recoil frequency associated
with the emission and absorption of photons with

transverse momentum ℏq. Consequently, an instability
threshold condition ReðλÞ ¼ 0 can be written as a threshold
in the pump saturation parameter

p0 ≡ pth ¼
2ωrq

b0ΓR sinðq2d=k0Þ
: ð15Þ

In contrast to the instability threshold demonstrated here,
the model described in Ref. [31], which assumed a cold
classical gas of atoms, predicts a threshold ∝ T at low
temperature, i.e., zero threshold at zero temperature. The
existence of a finite minimum threshold in the BEC case
is therefore quantum mechanical in origin. The threshold
may be interpreted physically as due to the intrinsic
velocity of the BEC wave packet, i.e., the kinetic part of
the Schrödinger equation, which acts to spread the wave
function and opposes the formation of any density modu-
lation. This threshold can also be written as a threshold in
wave number q < qdom of qdom, where

qdom ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mb0ΓRp0

ℏ

r
ð16Þ

is the dominant wave number for which the instability
growth rate is largest as sinðq2domd=k0Þ ¼ 1. Consequently,
there exists a lower limit to the spatial size or period of
the periodic structure, Lmin ≈ 2π=qdom, that the BEC will
sustain. The growth rate GðqÞ ¼ ReðλÞ is given by

GðqÞ ¼ ReðλÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωrqb0p0ΓR

2
sinðq2d=k0Þ − ω2

rq

r
; ð17Þ

which requires sin ðq2d=k0Þ > 0 for GðqÞ > 0. Note that
far above the threshold, i.e., for pump intensities such that
p0 ≫ pth, the instability growth rate of Eq. (17) reduces to

G ¼ ReðλÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωrqb0p0ΓR

2
sinðq2d=k0Þ

r
; ð18Þ

where it has been assumed that sinðq2d=k0Þ > 0. It can be
shown that this growth rate is identical to that of the
classical growth rate derived in Ref. [31] at zero
temperature.
Figure 2 shows the dependence of the pump threshold

(pth) on wave number (q2k0=d) and, for a fixed pump
intensity, the dependence of the instability growth rate (G)
on wave number as calculated from Eq. (17). It can be
seen that there are multiple instability regions or balloons
that result from the argument of sinðq2k0=dÞ changing by
multiples of 2π. In contrast to the prediction of the classical
model [31], the instability balloons in the quantum case are
not degenerate but have threshold minima that increase
with q2. The dependence of the threshold intensity on wave
number is very different from that of the classical model of
Ref. [31], which predicts instability balloons with a degen-
erate minimum threshold that becomes zero at zero
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temperature. Note that the quantum model predicts a
minimum threshold at q ¼ 0, but the growth rate here is
zero. There is a finite band of unstable wave numbers q
with q > 0 with the maximum growth rate occurring at
q ¼ qdom of Eq. (16).
Figures 3 and 4 show snapshots of the evolution of the

field intensities or saturation parameter s and the BEC
density distribution jΨj2 for parameters such that the pump
intensity exceeds the threshold in Eq. (15), resulting in the
simultaneous formation of a periodic modulation in light
intensity and BEC density and initiated by noise. The
dispersion relation (13) predicts that for the parameters
used, of all the modes included in the simulation those with
n ≤ 6 are above the threshold. It can be seen that the
modulation produced corresponds to n ¼ 5, which has the
maximum growth rate due to the value of Θ used, as
indicated by the dot in Fig. 2(b). In Fig. 3, the pump field is
red detuned with respect to the atomic resonance (Δ < 0),
which results in the BEC being attracted to regions of
maximum light intensity. Conversely in Fig. 4, the pump
field is blue detuned with respect to the atomic resonance
(Δ > 0), which results in the atoms being attracted to
regions of minimum light intensity. Simulations of a cold
classical gas would differ significantly from those shown in
Figs. 3 and 4 as they would show growth of larger-q
patterns with shorter spatial periods. In both cases the
pattern amplitude of the BEC grows exponentially and then
fluctuates around a finite value, showing an asymptotic
structured state.
In conclusion, we have demonstrated that when a zero-

temperature BEC interacts with counterpropagating optical

fields in the presence of a single feedback mirror, a self-
structuring instability occurs that results in the spontaneous
transverse modulation of the optical intensity and the BEC.
In contrast to the case of a classical gas, in the case of the
quantum gas or BEC there is an instability threshold at zero
temperature that suppresses high-q modes that are pre-
dicted to grow by the classical model. A consequence of
this is that for a given pump field intensity, there is a lower
limit to the transverse size of the structure or pattern that
can be produced in a BEC. A physical explanation for
this limit is that the dispersion of the BEC wave packet
stabilizes the tendency of the initially uniform BEC density
distribution to become modulated as a result of instability.
A possible interpretation of this limit is as a “healing length”
of structures in the coupled BEC-light system analogous to
the usual healing length associated with the scattering length

(a)

(b)

FIG. 2 (color online). (a) Threshold pump intensity saturation
parameter pth as a function of q2k0=d as calculated from Eq. (15)
(solid line) and from the classical model of Ref. [31], for a small
but finite temperature T ¼ 1 × 10−12 K (dashed line). (b) Growth
rate G as a function of q2k0=d for p0 ¼ 1.9 × 10−9 (dotted line in
upper panel) as calculated from Eq. (17) (solid line) and from the
classical model of Ref. [31] for T ¼ 1 × 10−12 K (dashed line).
Parameters used are b0 ¼ 20, jΔj ¼ 100, d=k0¼2.48×10−10 m2,
R ¼ 0.99, and Γ ¼ 3.77 × 107 s−1.

(a) (b)

FIG. 3 (color online). Evolution of (a) the BEC density
distribution jΨðx; tÞj2 and (b) the optical intensity sðx; tÞ during
the self-structuring instability when the pump field is red detuned.
Parameters used are Θ¼π=50, b0¼20, Δ¼−100, Γ=ωr¼
2.53×109, R ¼ 0.99, and p0 ¼ 1.9 × 10−9.

(a) (b)

FIG. 4 (color online). Evolution of (a) the BEC density
distribution jΨðx; tÞj2 and (b) the optical intensity sðx; tÞ during
the self-structuring instability when the pump field is blue detuned.
Parameters used are as for Fig. 3 with the exception that Δ ¼ 100.
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of a collisional BEC. Just as the healing length of a BEC is
an important length scale for structures such as solitons in
BECs [37,38] this optomechanical healing length should
play an analogous role for optomechanically induced struc-
tures similar to those proposed in, e.g., Ref. [39] but which
involve coherent light and matter.
Another interesting aspect of the results presented here is

the connection with generic phase transition phenomena in
quantum gases. Several recent experiments involving BECs
in optical cavities [16,34,40] have explored connections
with Dicke Hamiltonian models and with associated
phenomena, e.g., transitions to a supersolid state [40].
It can be shown [41] that the BEC with the single-mirror
feedback scheme considered here can also be mapped onto
an extended, multimode Dicke Hamiltonian model.
Similarly, the transition to a spatially modulated state
has characteristics of a transition to a supersolid in the
sense of Ref. [40]. In common with Ref. [40] the transition
occurs due to long-range optically mediated forces but an
important distinction is that the spatially ordered “super-
solid” state observed here has a spatial period with a length
scale that is self-selected and not externally imposed.
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