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Motivated by the topologically insulating circuit of capacitors and inductors proposed and tested by Jia
et al. [arXiv:1309.0878], we present a related circuit with fewer elements per site. The normal mode
frequency matrix of our circuit is unitarily equivalent to the hopping matrix of a quantum spin Hall
insulator, and we identify perturbations that do not backscatter the circuit’s edge modes. The idea behind
these models is generalized, providing a platform to simulate tunable and locally accessible lattices with
arbitrary complex spin-dependent hopping of any range. A simulation of a non-Abelian Aharonov-Bohm
effect using such linear circuit designs is discussed.
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The realization that electrons propagating on the edges
of two-dimensional (2D) topological insulators at zero
temperature are protected from certain disorder [1–5] has
spurred research simulating these and similar edge effects
in photonic or phononic systems [6–9] (reviewed in
Ref. [10]). The existence of edge modes whose energies
lie within a given bulk gap of a noninteracting tight-binding
Hamiltonian can be traced to a certain property of the
corresponding hopping matrix [11]. Namely, a “topologi-
cally nontrivial” hopping matrix is characterized by having
a nontrivial value of some topological invariant at that bulk
gap. Therefore, the problem of engineering edge modes in
bosonic systems can be reduced to making sure that the
time evolution is governed by some topologically nontrivial
matrix. Many efforts emulate the electronic systems that
inspired us, but over time we should be able to construct a
wider variety of systems than those readily available in
nature (e.g., Ref. [12]). While edge mode protection in
topologically nontrivial bosonic systems may not be as
intrinsic or robust (e.g., protection is not guaranteed by
time-reversal symmetry; see Box 2 of Ref. [10]), these
directions should nevertheless advance understanding and
could offer novel applications of the materials in question.
In this Letter, we discuss topologically insulating (TI)

circuits [13]—lattices of inductors and capacitors whose
normal mode frequency matrix Ω2 mimics a topologically
nontrivial hopping matrix of an electronic system.
Topological photonics includes many proposals [6,7]; here,
we study only inductors and capacitors with the goal of
providing the simplest building blocks that can lead to
topological nontriviality. We discuss a minimal example
[Fig. 1(a)] whose Ω2 matrix is (unitarily) equivalent to the
hopping matrix of a spinful 2D electron gas in a magnetic
field (see Sec. 5.2 in Ref. [14]), i.e., a spin-doubled Azbel-
Hofstadter model [15] (deemed the time-reversal invariant
(TRI) Hofstadter model [16]). Our example simulates 1=3
magnetic flux per plaquette. Such a model is (topologi-
cally) similar to the spin-doubled Haldane model lattice

[17] (see Sec. 9.1.2 in Ref. [14]) that is featured in the more
general Kane-Mele Z2 topological insulator [1,2]. We
determine how features of such models carry over to
the circuit context, summarized in Table I. The first TI
circuit, which has already been realized [13], is a simple
extension of our example, and we outline that design in
the Supplemental Material [18]. We further generalize the
recipe and provide a method to construct Ω2 equivalent to
the hopping matrix of a lattice of spins with arbitrary

FIG. 1 (color online). (a) Circuit diagram of a TI circuit lattice,
whose normal mode frequency matrix Ω2 is equivalent to the
hopping matrix of the spin-doubled Hofstadter model in the
Landau gauge with respective �1=3 magnetic flux per plaquette.
All inductors (capacitors) have uniform inductance (capacitance),
so colors are used for visual aid only. The lattice consists of
triangular sites m, n (labeled as ϕm;n, shaded gray), each

consisting of three integrated voltages ϕðμÞ
m;n (μ ¼ 0, 1, 2) at its

nodes. The vertical inductive connection is dependent on the
horizontal index m and generated by the cyclic wiring permu-
tation Vy in Eq. (1). (b) Band structure of Ω2 simulating a semi-
infinite sample, i.e., a wide vertical strip with the left edge
consisting of ðVyÞ0 permutations and right edge mode bands
removed. Bands for the spin up (down) component of the TRI
Hofstadter model are in red (blue). The spin Chern number Csc
(see text) is written inside each gap. The edge modes below the
lowest bulk band arise because of circuit edge effects [27] and are
not topologically protected because they do not traverse a gap.
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complex spin-dependent hopping. Notably, we show how to
simulate any Uð1Þ hopping with a smaller circuit than that
of Ref. [13], which simulated a specific Uð1Þ hopping. This
provides a platform to synthesize background gauge fields
using linear circuits in parallel to studies with more
complex elements [7,21] and to intense investigations using
ultracold atoms (e.g., Refs. [22–25] and refs. therein).
Minimal example.—We distill the idea from Ref. [13] in

the form of a simplified example [Fig. 1(a)] and detail how
our methods and conclusions apply to Ref. [13] elsewhere
(Supplemental Material [18]). Our circuit consists of a
lattice of sites (gray), with each site consisting of three
nodes. Inductors link sites to each other while capacitors
couple the nodes within a site. We stress that no external
flux is threaded through any loop of the circuit, and the
magnetic flux of the Hofstadter model is simulated via the
intersite inductive wiring. Transforming the real normal
mode frequency matrix Ω2 into the form of a Hofstadter
hopping matrix consists of grouping degrees of freedom
into vectors and performing a transformation to complex
variables. In an ungrounded circuit, each nodem, n, μ (with
μ ¼ 0, 1, 2 labeling the degrees of freedom of the site) has a

time-integrated absolute voltage ϕðμÞ
m;n ≡ R

t
−∞ vðμÞm;nðt0Þdt0

associated with it [26]. This labeling scheme introduces
redundant degrees of freedom (which will soon be
removed), but allows Ω2 to be determined analytically.
We now group the nodes at each site m, n into a vector

ϕT
m;n ¼ hϕð0Þ

m;n;ϕ
ð1Þ
m;n;ϕ

ð2Þ
m;ni. For example, the Lagrangian

contribution of the link between site m, n and m, nþ 1
[see Fig. 1(a)] is then organized into a (kinetic) capacitive part
1
2

P
δ¼0;1

_ϕT
m;nþδC0

_ϕm;nþδ and a (potential) inductive part

1

2

�X
δ¼0;1

ϕT
m;nþδI3ϕm;nþδ − ϕT

m;nVyϕm;nþ1 − ϕT
m;nþ1V

T
yϕm;n

�

with In n × n identity and respective onsite and intersite
couplings

C0 ¼
1

3

0
B@
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0
B@
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1
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ð1Þ

Above, ðVyÞ01, ðVyÞ12, and ðVyÞ21 correspond respectively
to the red, blue, and green circuit elements from Fig. 1(a),
and we have set a uniform capacitance of 1=3 (for
normalization) and inductance of 1. The equation of motion
(EOM) for ϕm;n in the lattice from Fig. 1(a) is

C0ϕ̈m;n ¼ −4ϕm;n þ Vxϕmþ1;n þ VT
xϕm−1;n

þ ðVyÞmϕm;nþ1 þ ðVT
y Þmϕm;n−1; ð2Þ

where Vx ¼ I3 and 4 is the number of nearest neighbors for
a site in the bulk. The three distinct powers of Vy

[ðVyÞ3 ¼ I3] correspond to three vertical inductive wiring
permutations and mimic the Hofstadter model in the
Landau gauge.
To diagonalize Ω2 in the index μ and simultaneously

remove the aforementioned redundant degrees of free-
dom, one can apply a discrete Fourier transform F to

the three nodes of each site: ζm;n ¼ Fϕm;n or ζðμÞm;n ¼
ð1= ffiffiffi

3
p Þeið2π=3ÞμνϕðνÞ

m;n (μ; ν ∈ f0; 1; 2g and repeated indi-
ces summed). This site-preserving transformation to a

complex vector ζTm;n ¼ hζð0Þm;n; ζ
ð1Þ
m;n; ζ

ð2Þ
m;ni block diagonalizes

Ω2 in μ at the expense of introducing complex numbers. In
the ζ basis, the simultaneously diagonal capacitive and
inductive coupling matrices are ~C0¼diagð0;1;1Þ,
~Vy¼diagð1;eið2π=3Þ;e−ið2π=3ÞÞ, and ~Vx ¼ Vx ¼ I3. Since

the transformed circuit Lagrangian does not contain _ζð0Þm;n

terms [since ð ~C0Þ00 ¼ 0], the ζð0Þm;n ≡P
μϕ

ðμÞ
m;n component for

each site represents “half” of a degree of freedom (akin to a
classical harmonic oscillator in the limit of zero mass) and
can be thought of as an ordinary normal mode in the limit

of zero capacitance. The EOM for
n
ζð1Þm;n; ζ

ð1Þ⋆
m;n ¼ ζð2Þm;n

o
,

treated as independent full degrees of freedom (j ¼ 1, 2), is

ζ̈ðjÞm;n ¼ −4ζðjÞm;n þ ζðjÞmþ1;n þ ζðjÞm−1;n

þ eið2π=3ÞmjζðjÞm;nþ1 þ e−ið2π=3ÞmjζðjÞm;n−1: ð3Þ

These variables are linear superpositions of bosonic modes,
and their hopping properties resemble the TRI Hofstadter
model in the Landau gauge; i.e., they acquire a (simulated)
Peierls phase upon a vertical hopping. Thus, the block-
diagonal normal mode frequency matrix ~Ω2 ¼ ⨁μ

~Ω2
μ

consists of the trivial mode matrix ~Ω2
0 and the matrices

~Ω2
1;2 forming the spin-doubled Hofstadter model.
Topological invariant.—In Fig. 1(b), the band structure

of ~Ω2
1 ( ~Ω2

2) is plotted in red (blue), depicting slightly
distorted [27] counterpropagating edge modes. Since the
pseudospin hζð1Þ; ζð2Þi is conserved, the spin-doubled
Hofstadter model is characterized by the Z spin Chern
number Csc ¼ 1

2
ðC1 − C2Þ [4] at each gap. Given an edge,

the Chern numbers Cj are related to the number of times the

edge modes of ~Ω2
j wind around a horizontal line drawn in

the gap (Secs. 5.3.1 and 6.4 in Ref. [14]). Moreover, the
quantity C ¼ Cscmod2 determines whether there is an even
or odd number of pairs of counterpropagating edge modes
(this is the invariant of the more general Z2 TI [2], a
quantum spin Hall insulator, QSHI, with no spin conser-
vation). The invariant C is characterized by Kramers
degeneracy, which prohibits elastic backscattering between
counterpropagating edge modes only for odd numbers of
edge mode pairs per edge [28]. Both our example and
Ref. [13] contain one gapless edge mode pair per edge
(Csc ¼ 1) and, since pseudospin is conserved, constitute a
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QSHI. Moreover, this system is not a crystalline topological
insulator [29] (as defined in Ref. [30]) since C ≠ 0.
Because of the invariants established above, there must

exist some operator in the circuit context that mimics the
antiunitary electronic time-reversal operator iσ2K (withKi ¼
−iK and σ1;2;3 the usual Pauli matrices), squares to −I2, and
generates a Kramers degeneracy (a similar observation has
been made [9] with photonic TIs [8]). Such an operator does
indeed exist and comes about from a symmetry of the circuit.
In theϕ basis, the couplingmatrixVy, a cyclic permutation of
all nodes in each site, commutes with Ω2 and generates the
symmetry group C3 ≈ fI3; Vy; VT

yg. A generic linear com-
muting operator (with identity components in the dimensions
indexed by m, n) can be expressed as cμðVyÞμ for some
cμ¼0;1;2 ∈ C. Since Vy is real, all antilinear extensions of the
above operators can be expressed as cμðVyÞμK. In the ζ basis,

K → ~K ¼ F†KF ¼ F†F⋆K ¼ ð1 ⊕ σ1ÞK;

which squares to I3. However, the operator S [such that ~S ¼
ð1 ⊕ σ2ÞK and ~S2 ¼ 1 ⊕ ð−I2Þ] is also in the span of
ðVyÞμK. Thus, electronic time-reversal symmetry in the
tight-binding context maps to a combination of ordinary
time-reversal and cyclic permutations in the circuit context.
We also note that ~Σ ¼ ~S ~K ¼ 1 ⊕ ð−iσ3Þ characterizes the
conserved pseudospin for the time-reversed Hofstadter
copies.
Symmetry protection.—Mirroring topological protection

in QSHIs and Z2 TIs, counterpropagating edge modes
of a TI circuit must also be “protected” to some degree.
Emulating one-particle elastic scattering processes in TRI
electronic systems [28], a crossing between edge modes on
the same edge at time-reversal invariant points k ¼ 0, π in
the Brillouin zone will not be lifted by inductance or
capacitance perturbations that commute with S (which is
now in the ϕ basis). Let a generic inductive link between
sites m, n and p, q be parametrized by

ϕT
m;nM11ϕm;n þ ϕT

p;qM22ϕp;q

þ ϕT
m;nM12ϕp;q þ ϕT

p;qMT
12ϕm;n; ð4Þ

where real 3 × 3 matrices Mjj (j ¼ 1, 2) are on-site
couplings at the two respective sites andM12 is the intersite
coupling. Such a perturbation will not cause elastic back-
scattering between edge modes whenever ½Mjj0 ; S� ¼ 0. For
our design, such perturbations are all those which do not
break the circuit’s C3 symmetry, i.e., commute with Vy. For
example, an identical simultaneous perturbation of all three
inductances in any given link [Mjj ∝ I3, M12 ∝ ðVyÞμ] or
an on-site perturbation (Mjj0 ∝ δj1δj01½ðVyÞμ þ ðVT

y Þμ�)
will not mix edge modes. However, fluctuations of induct-
ance will cause elastic backscattering between edge modes
whenever the fluctuations are not identical within any given
link. A similar statement holds for capacitive perturbations.

Topologically insulating circuits (i.e., both our design
and Ref. [13]) turn out to be similar to certain optical
resonator designs [7] in that both are robust against disorder
that does not induce flips of pseudospin [10]. In our design,
the pseudospin is characterized by Σ ¼ SK: since Mjj0 are
real matrices, ½Mjj0 ; S� ¼ 0 ↔ ½Mjj0 ;Σ� ¼ 0. We also note
that, in a realistic setup, both optical resonator edge states
and TI circuit edge modes will decay due to optical and
microwave dissipation, respectively.
Generalizations.—Given that the above design only has

d ¼ 3 nodes per site, one can consider increasing the
number of nodes per site (triangles→ d-gons) and general-
izing the cyclic permutation (Vy →

P
d−1
μ¼0 jμihμþ 1jmodd).

This results in a family of models that can emulate TRI
Hofstadter hopping matrices with p=d background mag-
netic flux using d nodes per site and vertical connections
ðVyÞp (with integer p). We note in passing that the d ¼ 2

case is trivial because it is not gapped in the bulk [see
Eq. (5.53) in Ref. [14]] and that Ref. [13] is closely related to
d ¼ 4 (Supplemental Material [18]). However, we have
developed other generalizations that allow the simulation of
any background gauge field using circuits that are much
more compact. We discuss these approaches below.
First, an arbitrary complex hopping can be achieved

using only three nodes per site. For simplicity, we first focus
on one link. Instead of having one wiring permutation
(e.g.,Vy in Fig. 1), one can implement all three permutations
ðVyÞμ in a linear superposition [Fig. 2(a)]. In this case, each
permutation gains its own degree of freedom. The intersite

FIG. 2 (color online). (a) Superposition of three different wiring

permutations ðVyÞμ and their respective inverse inductances lðμÞ
inv,

μ ¼ 0, 1, 2 (solid, dashed, dotted lines, respectively), achieving
any Uð1Þ hopping in the ζ basis. (b) Additional wiring permu-
tations PðVyÞμ which create Uð2Þ hopping terms in the ζ basis.
(c) A circuit to simulate the Aharonov-Bohm effect. A vector
signal ϕin enters from the left, propagates through N sites via two
different paths A and B, and produces two outputs, ϕA;B. One can
measure an interference between these outputs [Eq. (7)] and
observe oscillations for even N since permutations Vy and P do
not commute.
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inductive coupling matrix is then Vy → VA ¼ lðμÞ
invðVyÞμ,

where lðμÞ
inv is the inverse inductance of permutation μ.

In the ζ basis, the coupling is diagonal with ð ~VAÞμν ¼
lðτÞ
inve

ið2π=3Þτνδμν (no sum over ν). Parametrizing the μ ¼ 1

component in terms of an amplitude and phase yields
ð ~VAÞ11 ¼ tAeiθA with

tA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
lð0Þ
inv −

1

2
ðlð1Þ

inv þ lð2Þ
invÞ

i2 þ 3

4
ðlð1Þ

inv − lð2Þ
invÞ2

r
;

θA ¼ tan−1
� ffiffiffi

3
p ðlð1Þ

inv − lð2Þ
invÞ

2lð0Þ
inv − ðlð1Þ

inv þ lð2Þ
invÞ

�
: ð5Þ

Naturally, ð ~VAÞ00 ¼
P

μl
ðμÞ
inv ≡ λA and ð ~VAÞ22 ¼ tAe−iθA .

Additionally, there is a diagonal inductance contribution
of 1

2
λAζ†ζ to both of the linked sites. Thus, the hopping and

diagonal terms ftA; θA; λAg can be tuned using flðμÞ
invg2μ¼0

with the constraint λA ≥ tA since lðμÞ
inv ≥ 0. The symmetry

protection still holds here since ðVyÞμ ∈ C3.
Second, non-Abelian couplings can straightforwardly be

implemented while still keeping d ¼ 3. Instead of using the
permutations ðVyÞμ, three other permutations PðVyÞμ [with
P ¼ 1 ⊕ σ1 and ½P; Vy� ≠ 0; see Fig. 2(b)] can be super-
imposed to give an inverse inductance coupling matrix

Vy → VNA ¼ lðμÞ
invPðVyÞμ. Nonzero entries of ~VNA are an

off-diagonal hopping ð ~VNAÞ12 ¼ ð ~VNAÞ⋆21 ≡ tNAeiθNA and a

diagonal contribution ð ~VNAÞ00 ¼
P

μl
ðμÞ
inv ≡ λNA. Similar to

VA, the hopping and diagonal terms ftNA; θNA; λNAg of VNA

can be tuned using flðμÞ
invg2μ¼0. As an example, one can

already realize a non-Abelian generalization of the
Hofstadter model [23] by letting Vx → P in Eq. (2).
The above design allows one to create a lattice with

spatially nonuniform noncommuting unitary hoppings
between sites [e.g., tm;n expðiθm;nÞ using either ðVyÞμ or
PðVyÞμ] while maintaining identical on-site contributions
(λm;n ≡ λ). Despite this flexibility, one cannot create
arbitrary Uð2Þ hoppings using three nodes per site (assum-
ing on-site contributions are to remain identical). This is
because linear superpositions of the six permutations [ð ~VyÞμ
and Pð ~VyÞμ] with nonnegative real coefficients (since our
variables are inverse inductances) do not span all unitary
2 × 2 matrices acting on hζð1Þ; ζð2Þi. More permutations are
needed, so one needs more nodes per site to generate them.
Finding this minimal number of nodes maps to an open
problem from group theory [31,32], and we have deter-
mined that one needs at most n2 nodes per site to simulate
unitary hoppings of dimension n > 2 (Supplemental
Material [18]).
Non-Abelian Aharonov-Bohm effect.—We finish with a

discussion of applications. First, we propose an experiment
that uses theϕ-ζ duality to observe an electrical non-Abelian

Aharonov-Bohm (AB) effect [23,24,33]. Since all circuit
elements are reciprocal here, it is the nonreciprocity of
their permutations that leads to interference effects. One can
think of ϕ as the wave functions and sites n ¼ 1; 2;…; N

as spatial positions [Fig. 2(c)]. An incoming signal ϕT
in ¼

hϕð0Þ
in ;ϕð1Þ

in ;ϕð2Þ
in i is applied onto paths A and B. Let

ϕðμÞ
in ¼

ffiffiffi
2

3

r
cos

�
ωt −

2π

3
μ

�
; ð6Þ

which is equivalent to ζTin ¼ ð1= ffiffiffi
2

p Þh0; eiωt; e−iωti. Path A
contains N − 1 cyclic permutations Vy from Eq. (1) while
pathB consists ofN − 1 permutationsP fromFig. 2(b) (with
½Vy; P� ≠ 0). Remembering Eq. (3), we see that a phase of
eið2π=3Þ (e−ið2π=3ÞÞ is gained by ζð1Þ (ζð2Þ) as the signal “hops”
sites in path A. For path B, the ζð1Þ and ζð2Þ components are
exchanged upon each application of P. One can super-
impose the outputs ϕA and ϕB to observe their interference.
For odd N, this interference is constant in time. For even N,
one should see oscillations due to a nontrivial path B,

jϕA þ ϕBj2 ∝ cos2
�
ωt −

2π

3
½ðN − 1Þmod 3�

�
: ð7Þ

Since voltage is the derivative of ϕ, one can perform the
above experiment by applying voltage signals of the form of
ϕin from Eq. (6), measuring the six output signals at site N
for paths A andB, and superimposing them in the manner of
Eq. (7). Since the AB effect is nonreciprocal, driving from
right to left (ϕin ↔ ϕA;B) should flip the sign of the phase
gained along A.
Outlook.—This work generalizes the first realization of a

TI circuit [13]. We present a simplified circuit whose
normal mode frequency matrix is unitarily equivalent to
the hopping matrix of the time-reversal invariant Hofstadter
model [16] with 1=3 magnetic flux per plaquette. A
summary of the equivalence is in Table I. Since
Hofstadter models posses edge modes, we determine which
perturbations do not cause edge modes to backscatter.
Additionally, we generalize the approach and determine

the minimal circuit complexity required to simulate non-
Abelian background gauge fields. Besides a simulation of

TABLE I. Summary of the equivalence between the Hofstadter
model and a TI circuit. ϕðμÞ

m;n is the integrated voltage at node
m; n; μ, as depicted in Fig. 1(a), σ2 is the second Pauli matrix, and
Ki ¼ −iK.

TRI Hofstadter model TI circuit

Hopping matrix Normal mode frequency matrix Ω2

Spinful fermion

cm;n ¼
�
cð1Þm;n; c

ð2Þ
m;n

� �
ζð1Þm;n; ζ

ð1Þ�
m;n

�
with

ζð1Þm;n ¼ eið2π=3ÞνϕðνÞ
m;n

Peierls phase Intersite wiring permutations
Kramers degeneracy ~S ¼ ð1 ⊕ σ2ÞK due to C3 symmetry
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the Aharonov-Bohm effect, we now speculate on further
applications of this circuit QED simulation tool [34]. A
major flexibility is being able to construct and locally probe
virtually any lattices (e.g., honeycomb [25] or kagome [35])
and lattices with connections other than nearest neighbor at
the same cost in complexity. Almost any physically relevant
and exotic geometry can be implemented [36] (e.g., a
Möbius strip [13]). One can construct interfaces of lattices
and observe mixing of edge modes at the boundary, akin to
graphene p-n junctions [37]. To simulate interactions, one
can substitute Josephson junctions [38] (mechanical oscil-
lators [39]) for inductors (capacitors). These and other topics
are currently under investigation.
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Note added.—After completion of this work, we learned
that an acoustic analogue of the 1/3 TRI Hofstadter model
has been implemented in Ref. [40].
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