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We propose a hybrid system with quantum mechanical three-body interactions between photons,
phonons, and qubit excitations. These interactions take place in a circuit quantum electrodynamical
architecture with a superconducting microwave resonator coupled to a transmon qubit whose shunt
capacitance is free to mechanically oscillate. We show that this system design features a three-mode
polariton-mechanical mode and a nonlinear transmon-mechanical mode interaction in the strong coupling
regime. Together with the strong resonator-transmon interaction, these properties provide intriguing
opportunities for manipulations of this hybrid quantum system. We show, in particular, the feasibility of
cooling the mechanical motion down to its ground state and preparing various nonclassical states including
mechanical Fock and cat states and hybrid tripartite entangled states.
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The quantum control of macroscopic objects is of great
fundamental importance [1], and massive mechanical
resonators strongly interacting with well-controlled quan-
tum systems, e.g., photons and atomic excitations, are
desired candidates for this purpose [2–4]. These can be
employed for preparing nonclassical states in mechanical
resonators [5–9] but are also of technological interest, e.g.,
for weak force sensing [10] and transduction of quantum
information in quantum networks [11]. Particularly, non-
linear quantum phenomena are very desirable for the
above purposes as they considerably extend the options
for manipulation and control of quantum systems.
Introducing an anharmonic part into a setup can, for
example, strengthen its couplings and enrich its physics
via the nonlinearities [12–16]. Here, we propose a circuit
electromechanical hybrid architecture that combines a
nanomechanical degree of freedom with both an intrinsi-
cally nonlinear component in the form of a superconduct-
ing qubit and nonlinear interactions between the
mechanical mode, the qubit excitations, and a harmonic
mode of an electrical resonator. As a key novelty, this
architecture features three-body interactions between the
mechanical and two electrodynamical degrees of freedom,
which can not be approximated by effective two-body
interactions due to the involved nonlinearities.
We explore a circuit quantum electrodynamical system

consisting of a transmon qubit strongly coupled to a
superconducting microwave resonator. In addition, the
resonator-transmon system interacts with a nanomechan-
ical oscillator. The advantage of a transmon is its robustness
against fluctuations of background charges achieved by
increasing the ratio of Josephson and charging energies
EJ=EC [17] at the cost of a reduced anharmonicity.

Nonetheless, its nonlinearity can still be exploited for
controllably producing single photons in a superconducting
transmission line resonator via excitation exchange [18] or
for controllably producing propagating surface acoustic
phonons [19]. Moreover, Josephson junctions integrated
into a circuit electromechanical device can enhance its
optomechanical couplings [15,20–22].
Here, we propose to couple the transmon-cavity system

to a mechanical resonator by replacing one of the trans-
mon’s shunt capacitor legs with an oscillating nanobeam;
see Fig. 1. Hereby, we introduce a nonlinear coupling
between the qubit and the mechanical resonator that can
reach the strong coupling regime; i.e., the bare coupling
rate can exceed the relaxation rates of the system. In
particular, as the nanomechanical transmon is embedded in
a microwave cavity the hybrid system features an electro-
mechanical three-body interaction with a flux tunable
coupling rate. To show some assets of the system, we
exploit these couplings and the anharmonicity of the
transmon qubit to cool down the system to its ground
state and prepare it in nonclassical states such as mechani-
cal Fock and Schrödinger cat states.

FIG. 1 (color online). (a) Circuit diagram and (b) sketch of the
hybrid system composed of a transmon qubit, a superconducting
coplanar waveguide resonator, and a mechanical oscillator.
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The model.—Our system is composed of a supercon-
ducting coplanar waveguide resonator equivalent to an
LcCc oscillator, capacitively coupled to a transmon qubit
via a gate capacitance Cg. The shunt capacitance CB of the
transmon qubit depends on the position of a mechanical
resonator as depicted in Fig. 1(b). The Hamiltonian of the
complete system can be written as (ℏ ¼ 1) (see the
Supplemental Material [23])

Ĥ¼ Ĥ0þ Ĥ1þ Ĥd;

Ĥ0 ¼ωtâ†â− λðâ†Þ2â2þΩmb̂
†b̂þωcĉ†ĉþ iχðâĉ†− â†ĉÞ;

Ĥ1 ¼ ½gtâ†âþ igtcðâĉ† − â†ĉÞ�ðb̂þ b̂†Þ;
Ĥd ¼ ELðĉeiωLtþ ĉ†e−iωLtÞ: ð1Þ

Here, ωt ¼ ECð
ffiffiffiffiffi

8ζ
p

− 1Þ with ζ ¼ EJ=EC is the transition
frequency between the ground and the first excited state of
the transmon, which is modeled as an anharmonic oscillator
with annihilation (creation) operator â (â†) and Duffing
nonlinearity λ ¼ EC=2. The charging energy of the qubit is
EC ¼ e2=2CΣ with CΣ ¼ Cg þ CB þ CJ (CJ is the capaci-
tance of the Josephson junction). The nanomechanical
resonator with natural frequency Ωm is described by
phononic operators b̂ (b̂†), and its displacement is given
by x̂ ¼ xzpmðb̂þ b̂†Þ, where xzpm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=2mΩm

p

is its zero-
point motion amplitude and m its effective mass. The
microwave cavity oscillates with frequency ωc and is
characterized by the bosonic mode operators ĉ and ĉ†.
An external microwave field drives the cavity with ampli-
tude EL. The rate at which the qubit couples to the
transmission line is χ ¼ 4ECnacðζ=2Þ1=4 with nac the rms
number of cavity-induced Cooper pairs. Moreover, the
interactions between the mechanical resonator and the other
parts of the system are quantified by the coupling rates
gt ¼ g0

ffiffiffiffiffi

2ζ
p

for the transmon-mechanical mode interaction
and gtc ¼ 4g0nacðζ=2Þ1=4 for the three-body electro-
mechanical mode interaction, where g0 is the bare coupling
constant (Supplemental Material [23]). Notably, both
couplings are enhanced as the ratio EJ=EC increases,
which can be tuned in situ and in addition has the beneficial
effect of enhancing the coherence time of the transmon.
Finally, we mention that a rotating wave approximation
(RWA) is applied to get the Hamiltonian Ĥ. This is valid for
ζ ≫ 1 and χ; gt; gtc ≪ ωt;ωc, which is compatible with the
operation regime of our hybrid system.
In addition to the coherent evolution described by the

above Hamiltonian, the system is affected by dissipation.
The energy relaxation rate of the transmon is γt ¼ 1=T1,
and its total dephasing rate is 1=T�

2 ¼ 1=ð2T1Þ þ 1=Tϕ

where γϕ ¼ 1=Tϕ is the pure dephasing rate. High-quality
superconducting qubits can be fabricated with relaxation
and dephasing times as high as T1 ≈ 50 μs and T�

2 ≈ 20 μs
[24]. Yet, even higher values, T1 ≈ 70 μs and T�

2 ≈ 90 μs,
have been realized for three-dimensional cavity setups

[25,26]. In addition, the microwave photons of the cavity
are subject to loss at a decay rate of κc, and the mechanical
resonator is coupled to a thermal bath with the rate
Γm ¼ Ωm=Qm, where Qm is its mechanical quality factor.
These dissipation processes are captured by a Liouvillian in
Lindblad form. Thus, the full dynamics of our system is
described by the master equation

_ρ ¼ −i½Ĥ; ρ� þ γtDâρþ γϕDâ†âρþ ðn̄þ 1ÞΓmDb̂ρ

þ n̄ΓmDb̂†ρþ κcDĉρ; ð2Þ
where Dôρ ¼ ôρô† − ðô†ôρþ ρô†ôÞ=2 is the dissipator
and n̄ ¼ fexp½ðℏΩmÞ=ðkBTÞ� − 1g−1 is the thermal phonon
number.
Polariton-mechanical mode interaction.—For typical

configurations, the transmon-cavity interaction is in the
strong coupling regime (χ ≫ γt; κc). It is therefore con-
venient to describe the subsystem of cavity photons and
qubit excitations in terms of dressed state excitations called
polaritons, which decouple the interaction iχðâĉ† − â†ĉÞ.
In terms of these polaritonic modes p̂� ¼ α�â ∓ iα∓ĉ
(the explicit forms of α� are given in the Supplemental
Material [23]), the Hamiltonian (1) reads

Ĥ0 ¼
X

k¼�
½ωkp̂

†
kp̂k − λkðp̂†

kÞ2p̂2
k� þ Ĥþ− þΩmb̂

†b̂; ð3aÞ

Ĥ1 ¼
�

X

k¼�
gkp̂

†
kp̂k þ Gðp̂†

þp̂− þ p̂þp̂†
−Þ
�

ðb̂þ b̂†Þ; ð3bÞ

where the polariton resonances are given by ω� ¼
α2�ωt þ α2∓ωc � 2αþα−χ, while the polariton-mechanical
mode coupling rates are g� ¼ α2�gt þ 2αþα−gtc and
G ¼ αþα−gt þ ðα2þ − α2−Þgtc, and the nonlinearity for each
polariton is λ� ¼ α4�λ (Note that G > gtc due to the
contribution from gt). There are thus three-body inter-
actions for which the nonlinearity λ precludes the lineari-
zation of the terms p̂†

þp̂− or p̂þp̂†
−. This is in contrast to the

original three-mode interaction with strength gtc or to
optomechanical couplings in standard settings [27]. We
have included all the interpolariton interaction terms in
Ĥþ−; see the Supplemental Material [23]. Note that except
for an intensity-intensity interaction, all these interpolariton
interactions can be neglected in a RWA (Supplemental
Material [23]) provided ωþ − ω− ¼ ½Δ2 þ 4χ2�1=2 ≫ λ,
where Δ ¼ ωt − ωc is the detuning between the transmon
and cavity frequencies. This condition calls for a large
photon-qubit coupling rate (χ ≫ λ) and/or large transmon-
cavity detuning (Δ ≫ λ). To ensure the validity of the
above RWA, we work in the off-resonance regime with
Δ ≫ λ. The polariton-mechanical interactions in Eq. (3b)
provide us with a toolbox for the quantum control of the
state of the mechanical resonator, which is our main interest
for the proposed architecture in this Letter.
Cooling the mechanical resonator.—A first question of

interest is whether our setup allows for ground-state
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cooling of the mechanical mode, as this is a prerequisite for
many state preparation protocols. We show that this is
indeed feasible using sideband cooling [28]. In principle,
both interactions of Eq. (3b) are capable of performing the
task. For the three-mode interaction, one would transfer a
mechanical phonon and a lower polariton excitation into a
higher polariton excitation ω− þ Ωm ¼ ωþ, which sub-
sequently decays. However, a simpler and more efficient
route is to use the couplings p̂†

�p̂�ðb̂þ b̂†Þ at large cavity–
transmon detunings. Here, one polariton is dominantly
photonlike, while the other describes mainly a transmon
excitation. In this regime, the photonlike polariton is
practically decoupled from the mechanical mode, while
the transmonlike polariton strongly interacts with it at a
coupling rate close to gt. For this kind of interaction, the
final occupation number of the mechanical mode is limited
by the total dephasing time T�

2 of the qubit, and the ground
state can be reached for ΩmT�

2 > 1 [29].
We numerically solve Eq. (2) with the Hamiltonian of

Eq. (1) for two different sets of parameters. Set No. 1:
ζc¼150 [the resonance value, i.e., ωtðζcÞ¼ωc], m¼1pg,
g0=2π ¼ 2.9 kHz, Ωm=2π ¼ 10 MHz, κc=2π ¼ 10 kHz,
γt=2π¼ 3 kHz, and nac ¼ 8.5×10−4. Set No. 2: ζc¼142,
m¼3pg, g0=2π ¼ 3.3 kHz, Ωm=2π ¼ 1 MHz, κc=2π ¼
50 kHz, γt=2π¼5kHz, and nac ¼ 1.4 × 10−2. We also take
γϕ¼2γt and use the common parametersEC=2π¼0.5GHz,
ωc=2π ≈ 17 GHz, andQm ¼ 106. The consideredmechani-
cal parameters are compatible with experimental reported
values [30–32]. In Fig. 2we plot the numerical results for the
final phonon numbers achievable by cooling via either of the
polaritons. We find that it is possible to cool the mechanical
resonator from n̄ ≈ 20 phonons (corresponding to an ambi-
ent temperature T ≃ 10 mK) to n̄f ≈ 0.12 for the parameter
set No. 1 and from n̄ ≈ 100 phonons (environment temper-
ature T ≃ 5 mK) to n̄f ≈ 0.03 for the parameter set No. 2.
The multiple cooling resonances apparent in Fig. 2(b) are a
signature of the nonlinearity of the coupling [33] and, thus,
provide a measurable witness for the nonlinearity of the
transmon-vibrational mode interaction. Having shown the
feasibility of ground-state cooling, we now describe two
state preparation protocols enabled by our device.

Mechanical Fock states.—We first describe a protocol
for preparing the mechanical resonator in Fock states. Our
strategy here is to first generate individual polaritonic
excitations and then transfer them to the mechanics via
the three-mode interaction in Eq. (3b). To this end, sideband
cooling first brings the mechanical resonator close to its
ground state. Properly shaped microwave pulses at suitable
frequencies can generate single-qubit rotations for the
polaritons [34]. Hence, the polariton with higher frequency
is excited by such a pulse. Then the transmon is tuned to the
point where ωþ − ω− ¼ Ωm, and the system evolves for a
time τ1 ¼ π=2G, which converts the higher-energy polar-
iton into a lower-energy polariton and a single phonon in the
mechanical resonator. The generated lower-energy polariton
is finally annihilated by another microwave pulse, leaving
the system in a single phonon Fock state.
Strong three-body interactions and hence fast excitation

transfer could of course be achieved for ωt ≈ ωc
(Supplemental Material [23]). Yet, in this regime all
polariton-mechanical interactions have the same strength
gþ ¼ g− ¼ G ≈ gt=2, which enables additional undesirable
transfer channels that hamper the protocol. Hence, we
demand for sufficiently large mechanical frequencies to
suppress these unwanted interactions via a RWA and
simultaneously ensure ωþ − ω− ¼ Ωm. At the same level
of accuracy, the three-mode interaction becomes
Gðp̂†

þp̂−b̂þ p̂þp̂†
−b̂

†Þ. Furthermore, the transfer process
must be much faster than the decoherence rates of the
system; therefore, the restrictions on the system are
maxfγt; ~Γmg ≪ gt ≪ Ωm, where ~Γm ≈ n̄Γm is the effective
mechanical decoherence rate. The parameter set No. 1
satisfies the above criteria.
To provide evidence for its feasibility, we numerically

simulate the protocol, including the initial cooling to the
ground state, by solving the full master equation (2). As very
high fidelities for single-qubit gates have already been
demonstrated, we neglect errors in the polariton excitation
and deexcitation steps. The fidelity for a single-phonon state
prepared by sideband cooling followed by the above protocol
reaches 70% for the parameter setNo. 1 (seeFig. 3) and could
even be enhanced further by increasing the coupling rate and/
or starting frombetter ground states, e.g., by employing qubit
reset methods [35]. To achieve higher number states, the
process can be repeated until the target state is reached,where
the interaction times for the swap need to be adjusted to
τn ¼ π=2

ffiffiffi

n
p

G with n being the number of mechanical
phonons that will be obtained at the end of each stage.
Note that although the interpolariton interactions are con-
siderable, they will not play a role in this process as long as
the total number of polaritons does not exceed unity
(Supplemental Material [23]). Once prepared, the state of
the mechanical resonator can be analyzed by adapting the
measurement scheme pioneered in Ref. [18], i.e., tuning the
transmon to the point where ωþ − ω− ¼ Ωm for various
interaction times and reading out its excitation probability.
We note that the existence of the cavity mode is crucial

for the above protocol since the qubit-mechanical

FIG. 2 (color online). Mechanical final phonon numbers versus
drive detuning when only one of the polaritons p̂þ (solid lines) or
p̂− (dashed lines) is driven: (a) parameter set No. 1 with
ζ ¼ 150� 50 and (b) parameter set No. 2 with ζ ¼ 142� 60.
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interaction is not in the form of a state transfer Hamiltonian,
nor can it be changed to such form by intensely driving the
(anharmonic) qubit, and the original three-mode interaction
is not strong enough to be used in this way. Yet, the strong
coupling of the cavity to the qubit generates a strong state
transfer interaction of three-body form between the two
polaritons on the one hand and the mechanical resonator on
the other hand.
Tripartite hybrid entanglement.—We now turn to pro-

pose a protocol for preparing a non-Gaussian tripartite
entanglement between qubit, cavity, and the mechanical
resonator in our system. Such states are of interest from
both fundamental and technical points of view [36]. In
order to describe the steps for creating them, we go back to
the original (not dressed) picture of the system and consider
an effective three-level model for the transmon with ground
state j0it and excited states j1it and j2it.
The mechanical resonator is first cooled to its ground

state with the transmon and cavity off resonance. By the
application of a ½π=2�0↔1 pulse, the qubit is prepared in a
symmetric superposition of ground and first excited state.
Then we let the mechanical resonator interact with the
qubit. As the force exerted on the nanobeam depends on the
state of the transmon, such an interaction results in a
conditional displacement of the mechanical system from
the origin of the phase space. The maximal amount of
displacement is 2gt=Ωm, which is achieved when the
interaction duration equals half the mechanical oscillation
period. However, to have two distinguishable peaks in the
mechanical phase space one needs gt ≳ Ωm, which is not
the case in our system. This hurdle can be circumvented by
applying a sequence of Np regularly spaced ½π�0↔1 pulses
to the qubit with time intervals equal to half of the
mechanical period. By choosing an odd number of pulses
Np, apart from an irrelevant global phase factor, one arrives
at 1

ffiffi

2
p ðj0itj0icjβimþj1itj0icj−βimÞ with β¼ðNpþ1Þgt=Ωm

[37,38]. In the next step, the mechanical resonator can be

turned into a superposition of odd and even cat states by
applying a ½π=2�0↔1 pulse to the transmon: jΨtmi ¼
1
2
ðj0itj0icjψþim þ j1itj0icjψ−imÞ, which is already a

bipartite qubit-mechanical entangled state. Here,
N �jψ�i ¼ N�ðjβi � j − βiÞ with the normalization fac-
torN � ¼ ½2� 2e−2jβj2 �−1=2 is an even-odd cat state. Now, a
single photon in the cavity can be conditionally produced
via a ½π�1↔2 pulse that flips the qubit from its first to its
second excited state j1it → j2it. Then a flux pulse of
duration π=2

ffiffiffi

2
p

χ sets this transmon transition in resonance
with the cavity. Therefore, the second qubit excitation is
transferred into the cavity, leading to

jΨtmci ¼
1

2
ðj0itj0icjψþim þ j1itj1icjψ−imÞ: ð4Þ

The state of Eq. (4) is a hybrid Greenberger-Horne-
Zeilinger state [39]. Evidently, jΨtmci could also be
reduced to either even or odd cat states of the mechanical
mode by performing a postselection based on the readout of
the qubit or cavity state.
To attain macroscopically distinguishable mechanical

cat states, a minimum number of pulses Np is required. On
the other hand, the realizable Np is limited by the
decoherence rates of the system. Thus, the parameter
regime allowing for a successful preparation of the state
(4) is π × maxfγt; ~Γmg < Ωm=Np < gt. Note also that
employing the third level for cloning the qubit excitations
as cavity photons is necessary to get the state of Eq. (4).
Furthermore, it is desirable to transfer the qubit second
excitations into the cavity fast enough to decrease the
unwanted displacements, so we also demand χ ≫ Ωm.
Since we need to work with the transmon-mechanical mode
interaction, we chose off resonance as the appropriate work-
ing regime, where the three-mode interaction is negligible.
In Fig. 4(a) the fidelity of the prepared odd cat state is

plotted versus the number of applied pulses. Signatures
of its generation can be obtained via extracting phonon

FIG. 3 (color online). (a) Fidelity of prepared single phonon
state as a function of the transmon-mechanical coupling rate; for
ideal initial ground state (solid line) and attainable ground state
(dots). The point marked by the red circle corresponds to the
parameter set No. 1. [(b)–(e)] Wigner quasiprobability distribu-
tion of the prepared Fock states with gt=κc≈ (b) 5, (c) 10, and
(d) 21. (e) Ideal single phonon state, for comparison.

FIG. 4 (color online). (a) Fidelity of the prepared odd cat state
versus Np. (b) Probability of finding the transmon in its first
excited state for the target state jΨtmci (red triangles), for the state
resulting from a simulation starting from the ideal ground state
(blue squares), and a simulation starting from an attainable
ground state (green circles). The parameter set No. 2 is used
in these simulations.
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number probabilities with the method exploited in
Ref. [40]. The protocol itself can be verified in an easier
way by measuring the probability of finding the qubit in its
first excited state or detecting a single photon in the output
of the cavity as a function of the number of pulses
Np applied to the qubit. Theoretically, for the ideal
state jΨtmci these probabilities are Pðj1itÞ ¼ Pðj1icÞ ¼
1
2
ð1 − exp f−2ðNp þ 1Þ2g2t =Ω2

mgÞ. Figure 4(b) shows
Pðj1itÞ and the probability of finding the transmon in its
first excited state (or detecting a single photon) for the states
resulting from numerical simulations of the preparation
protocol neglecting errors in single-qubit gate operations.
The coincidence of the simulations with the theoretical ideal
curve confirms the feasibility of the protocol.
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