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Future metrology standards will be partly based on physical quantities computed from first principles
rather than measured. In particular, a new pressure standard can be established if the dynamic polarizability
of helium can be determined from theory with an uncertainty smaller than 0.2 ppm. We present calculations
of the frequency-dependent part of this quantity including relativistic effects with full account of leading
nuclear recoil terms and using highly optimized explicitly correlated basis sets. A particular emphasis is put
on uncertainty estimates. At the He-Ne laser wavelength of 632.9908 nm, the computed polarizability value
of 1.39181141 a.u. has uncertainty of 0.1 ppm that is 2 orders of magnitude smaller than those of the most
accurate polarizability measurements. We also obtained an accurate expansion of the helium refractive
index in powers of density.
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Some physical quantities, for example, properties of
the helium atom and interaction energies of helium atoms,
can now be computed from first principles with precision
rivaling and sometimes exceeding the best experimental
determinations [1–3]. Therefore, quantities of this type can
be used in establishing metrology standards. One example
is a possible standard of temperature based on acoustic gas
thermometry [4]. Another example is a pressure standard
based on optical interferometry [5]. The current pressure
standard dating back more than 300 years is realized by
mercury manometers and cannot be further improved. Also,
the reference manometer is far from portable: 3 m high and
containing 250 kg of mercury, a substance banned due to its
toxicity. Since pressure is one of the most widely measured
properties, in applications ranging from manufacturing of
semiconductor chips to air-traffic control, a new pressure
standard would significantly impact both technology and
everyday life. The proposed standard [5] obtains pressure
from the formula [6]

p ¼ n2 − 1

n2 þ 2

3kT
4πðαþ χÞ þ � � � ; ð1Þ

where n denotes the index of refraction of helium gas,
k the Boltzmann constant, T the temperature, α the dipole
polarizability, and χ the diamagnetic susceptibility of
helium. To account for nonideality of helium gas, one
has to include some small terms on the right-hand side
depending on dielectric and density virial coefficients [6].
The essential part of the new standard is the determination
of n with an uncertainty of 0.2 ppm via interferometric
measurements of a variable-length cavity filled with helium
and comparing to measurements in vacuum. The product
kT, currently known with an uncertainty of 0.9 ppm [7]

near the temperature of the triple point of water, is the
subject of active research and a reduction of this uncertainty
can be expected in near future. Since χ is 5 orders of
magnitude smaller than α, it can be computed using the
nonrelativistic wave function from the expression
χ ¼ −e2hr2i=3mec2, where e andme are the electron charge
and mass, c is the speed of light, and hr2i is the average
square of the electron-nucleus distance. Also the virial
coefficients are known accurately enough from theory
[3,8]. However, α cannot currently be measured with uncer-
tainty lower than 0.2 ppm, so the standard clings upon
theory being able to achieve such accuracy. This Letter
describes calculations of α from first principles. The result-
ing value of n can also be used to calibrate refractometers or
to correct errors in interferometric length measurements [9].
Since the radiation frequency of interest, 632.9908 nm

[10], is much smaller than the lowest resonance, the
frequency dependence of α can be efficiently calculated
from the power series expansion, αðωÞ ¼ α0 þ α2ω

2þ
α4ω

4 þ � � �, where α0 is the static dipole polarizability.
The coefficients αk, k > 0, describing the frequency
dependence of polarizability, will be referred to as the
(polarizability) dispersion coefficients. We shall use the
atomic units throughout (we never use reduced atomic
units), a30, where a0 is the Bohr radius ℏ

2=mee2, as the unit
of polarizability and the inverse of the atomic unit of time,
t0 ¼ ℏ3=mee4, as the unit of frequency. For light systems
like helium, each αk can be expanded in powers of the
fine structure constant 1=c, where c ¼ 137.0359991 [7] is

the speed of light expressed in atomic units, αk ¼ αð0Þk þ
αð2Þk þ αð3Þk þ � � �, αðlÞk being proportional to 1=cl. We

shall refer to αð2Þk as the relativistic contributions. The
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terms αð3Þk , αð4Þk , etc., are due to radiative as well as higher-
order relativistic effects predicted by quantum electrody-
namics (QED).
The nuclear mass dependence of the nonrelativistic

polarizability αð0Þn , can be taken into account exactly, but
for the relativistic and QED contributions, one has to use an
expansion in powers of the ratio of me to the nuclear mass
mα, i.e., in powers of 1=M ¼ me=mα ¼ 1=7294.2995361.
This subject has not been discussed in literature, and we
had to derive expressions defining these effects. Since 1=M
is of the order of 10−4, keeping the linear term is entirely
sufficient and such contributions can be represented in the

form αðlÞk ¼ αðl0Þk þ αðl1Þk , l ≥ 2, where αðl0Þk are computed

with the infinite nuclear mass and αðl1Þk are corrections of
the order of 1=ðMclÞ, referred to as the recoil corrections.
These recoil corrections are expected to be negligible except

for the static ones αð21Þ0 and αð31Þ0 and, possibly, for αð21Þ2 .
For comparisons with experiments, it is convenient to

convert frequency to wavelength λ ¼ 2πce2=ℏω

αðλÞ ¼ A0 þ A2λ
−2 þ A4λ

−4 þ � � � : ð2Þ

When αðλÞ remains in atomic units and λ is measured in
nm, then Ak ¼ fkαk, where f¼ 2πca0=nm¼ 45.56335253
(with a0 ¼ 0.05291772109 nm).
The static components of α obtained in the present Letter

are consistent with the values of Ref. [1] to all digits shown
in this reference, except for the term describing the electric-

field dependence of the Bethe logarithm and for αð40Þ0 . We
recomputed the former term using a different method than
used in Ref. [1] obtaining a result that differs only
marginally, by 0.011 μa30ð1μa30≡10−6a30Þ, the current value
being more accurate. The term αð40Þ0 was estimated in
Ref. [1] by the contribution from the simple one-loop
expression [11] and the uncertainty of this term was
assumed to be 40%. Later, it was shown in Ref. [12] that
the error of the one-loop approximation applied to the
excitation energies of helium is only about 5%. Therefore,
we reduced our error estimate from 40% to 25% or 0.14
μa30, which we believe is still very conservative.
The dispersion coefficients αk (k ¼ 2; 4; 6) were calcu-

lated thus far only by Bhatia and Drachman (BD) [13,14].
These authors did not provide any estimates of the
uncertainties. Their relativistic contributions do depend

on the nuclear mass but the recoil effect, αð21Þk , was not
correctly taken into account; see below. Furthermore, the
Ak coefficients were incorrectly converted from the reduced
Rydberg units: the factor ð1þme=mαÞk, appearing in the
conversion formula, was erroneously replaced by its
square ð1þme=mαÞ2k.
At the nonrelativistic level of theory, αðωÞ of an atom in

a quantum state ψ is defined by the standard polarization
propagator expression

αðωÞ ¼ hψ jzRðωÞzjψi þ hψ jzRð−ωÞzjψi; ð3Þ

where z ¼ z1 þ z2, with zi denoting electron coordinates,
and RðωÞ ¼ QðQH − Eþ ωÞ−1 is the resolvent of the
atomic Hamiltonian H, with Q ¼ 1 − P ¼ 1 − jψihψ j and
E being the energy of state ψ . For the helium atom

H ¼ −
1

2
∇2

1 −
1

2
∇2

2 −
1

2M
ð∇1 þ∇2Þ2 −

2

r1
−

2

r2
þ 1

r12
:

ð4Þ
RðωÞ satisfies the identity RðωÞ ¼ R − ωRRðωÞ, where
R ¼ QðQH − EÞ−1 is the static (reduced) resolvent of H.
Iterating this expression and inserting it into Eq. (3), one
obtains

αð0Þk ¼ 2hψ jzRkþ1zjψi: ð5Þ
To account for the leading relativistic contributions of the

order of 1=c2 assuming infinite nuclear mass, we add to
the Hamiltonian of Eq. (4) the perturbation from the
Breit-Pauli Hamiltonian [15] obtaining

αð20Þ0 ¼ −4hψ0jB1R0zR0zψ0i − 2hψ0jzR0B̄1R0zψ0i;

αð20Þ2 ¼ −4hψ0jB1R0zR3
0zψ0i − 4hψ0jzR0B̄1R3

0zψ0i
− 2hψ0jzR2

0B̄1R2
0zψ0i;

αð20Þ4 ¼ −4hψ0jB1R0zR5
0zψ0i − 4hψ0jzR0B̄1R5

0zψ0i
− 4hψ0jzR2

0B̄1R4
0zψ0i − 2hψ0jzR3

0B̄1R3
0zψ0i;

αð20Þ6 ¼ −4hψ0jB1R0zR7
0zψ0i − 4hψ0jzR0B̄1R7

0zψ0i
− 4hψ0jzR2

0B̄1R6
0zψ0i − 4hψ0jzR3

0B̄1R5
0zψ0i

− 2hψ0jzR4
0B̄1R4

0zψ0i;

where

B1 ¼ −
1

8c2
ð∇4

1 þ∇4
2Þ þ

π

c2
½δðr1Þ þ δðr2Þ� þ

π

c2
δðr12Þ

þ 1

2c2
½∇1r−112∇2 þ ð∇1r12Þr−312 ðr12∇2Þ�; ð6Þ

B̄1 ¼ B1 − hψ0jB1ψ0i, and the quantities with subscript 0
are analogous to those defined above but for an infinite-
mass nonrelativistic Hamiltonian.

The relativistic recoil term αð21Þ0 is equal αð21Þ0 ðB2Þ þ
αð21Þ0 ðH1B1Þ, where H1 ¼ −ð1=2MÞð∇1 þ∇2Þ2 and

B2 ¼
1

Mc2
½∇1r−11 ∇1 þ ð∇1r1Þr−31 ðr1∇1Þ þ∇1r−11 ∇2

þ ð∇1r1Þr−31 ðr1∇2Þ þ∇2r−12 ∇1 þ ð∇2r2Þr−32 ðr2∇1Þ
þ∇2r−12 ∇2 þ ð∇2r2Þr−32 ðr2∇2Þ�: ð7Þ
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The two components are given by

αð21Þ0 ðB2Þ ¼ −4hψ0jB2R0zR0zψ0i − 2hψ0jzR0B̄2R0zψ0i;
ð8Þ

where B̄2 is defined in the same way as B̄1 and

αð21Þ0 ðH1B1Þ
¼4½hψ0jzR0zR0H̄1R0B1ψ0iþhψ0jzR0zR0B̄1R0H1ψ0i

þhψ0jzR0H̄1R0zR0B1ψ0iþhψ0jzR0B̄1R0zR0H1ψ0i
þhψ0jzR0H̄1R0B̄1R0zψ0iþhψ0jH1R0zR0zR0B1ψ0i
−hψ0jzR0zψ0ihψ0jH1R2

0B1ψ0i
−hψ0jzR2

0zψ0ihψ0jH1R0B1ψ0i�; ð9Þ

where H̄1 ¼ H1 − hψ0jH1ψ0i.
The correction αð21Þ2 is very small and can be computed

using a finite difference expression

αð21Þ2 ≈ αð20Þ2 ðB1 → B2Þ þ αð20Þ2 ðH0 → HÞ − αð20Þ2 ; ð10Þ
which introduces an error of the order of 1=ðM2c2Þ, where
B1 → B2 means that the operator B1 in the expression for

αð20Þ2 should be replaced by B2 and similarly, H0 → H
means that quantities computed with the Hamiltonian H0

should be replaced by those computed with H.

To evaluate αðliÞk , accurate representations of the helium
ground-state wave functions ψ0 and ψ were obtained
by minimizing the Rayleigh-Ritz functional for the
Hamiltonians H0 and H, respectively. We also need four
types of auxiliary functions, which were obtained recur-
sively from Hylleraas-type functionals

JðnÞ0 ½ ~ϕ� ¼ h ~ϕjH0 − E0 þ P0j ~ϕi − 2h ~ϕjϕðn−1Þ
0 i; ð11Þ

for ϕðnÞ
0 ¼ Rn

0zψ0 and

KðnÞ
0 ½ ~ψ � ¼ h ~ψ jH0 − E0 þ P0j ~ψi − 2h ~ψ jð1 − P0ÞzϕðnÞ

0 i;
ð12Þ

for ψ ðnÞ
0 ¼ R0zϕ

ðnÞ
0 , and analogous functionals obtained

by dropping all the subscripts 0 for ϕðnÞ ¼ Rnzψ and
ψ ðnÞ ¼ RzϕðnÞ. The trial functions used in all minimization
processes were expanded in bases of Slater geminals

~ϕ ¼ ð1þ P12ÞYðr1; r2Þ
XN
i¼1

cie−αir1−βir2−γir12 ; ð13Þ

where P12 is the transposition operator whereas Yðr1; r2Þ ¼
z1 in calculations of ϕðnÞ

0 and ϕðnÞ and Yðr1; r2Þ ¼ 1

otherwise. One may note that the functions ψ ðnÞ
0 and

ψ ðnÞ contain also a D-wave component, but it does not
contribute to the matrix elements that are needed. The linear
coefficients were obtained by solving the appropriate set of

linear equations, while to determine the nonlinear param-
eters, we employed two strategies: the full optimization
(FO) and the stochastic optimization (SO). In the latter
case, the parameters αi, βi, γi are pseudorandomly gen-
erated from a box with optimized dimensions. We used two
boxes to model the short-range and medium-range asymp-
totics of the wave functions. To eliminate possibilities of
numerical errors, the FO and SO based codes (including the
integral and linear algebra routines) were programmed
entirely independently by different members of our team.

The contributions αð0Þk for k ¼ 0; 2; 4; 6 were computed
for several values of N, up to 600 (800) in the FO (SO)
approach, both optimizations giving at least 11 convergent
digits, with FO converging faster. Our results agree to 9, 8,
4, and 7 digits, respectively, with the values obtained by BD

[13]. Using the SO procedure, we also calculated: αð0Þ8 ¼
4.39500532ð1Þ, αð0Þ10 ¼6.7725956ð1Þ, αð0Þ12 ¼10.622083ð1Þ,
and αð0Þ14 ¼ 16.86118ð1Þ a:u:
For the relativistic contributions αð20Þk , k ¼ 0; 2; 4; 6, the

convergence is much slower than in the nonrelativistic case.
This is due to the fact that we use nonrelativistic functionals
which are sensitive to wave function values in different
regions of the configuration space than the relativistic
operators (these operators are too singular to be used in
optimizations). The SO procedure leads now to a faster
convergence than FO since randomly chosen exponents
cover the space more uniformly than FO exponents. Thus,
we used the SO results as our recommended values and in
estimates of uncertainty. Nevertheless, the agreement to
6, 5, 3, and 3 digits, respectively, between the two sets of
results is more than sufficient for the present purposes. Our
values are substantially more accurate than those of BD
[14], with agreement to only 2, 2, and 1 digit, respectively

(BD did not compute αð20Þ6 ). For αð20Þ0 , our value is
consistent with, but significantly more accurate than the
results of Refs. [1,16,17]. The relativistic recoil contribu-

tion αð21Þ0 is −0.0935ð1Þ μa30. Its smallness results from

some cancellation of its components, αð21Þ0 ðH1B1Þ and

αð21Þ0 ðB2Þ, equal to 0.1559 and −0.2494 μa30, respectively.

The contribution αð21Þ2 is equal to −0.144ð1Þ μa30t20, so it is
negligible.
It should be pointed out that the relativistic contributions

computed by BD [14] depend on the nuclear mass and,
strictly speaking, should not be compared with our,

nuclear-mass-independent contributions αð20Þk . This is
because these authors incorrectly assumed that the indi-
vidual terms in the Breit-Pauli Hamiltonian are propor-
tional to (inverse) powers of the reduced electron mass
rather than the real mass. Therefore, although the nuclear-
mass-dependent part of their relativistic contributions is of

the order of 1=ðMc2Þ, it differs from the αð21Þk ðB1H1Þ part of
the true recoil correction. Additionally, BD completely
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neglected the contribution αð21Þk ðB2Þ. Thus, their relativistic
contributions cannot be viewed as approximations to

αð20Þk þ αð21Þk . Since the effects of the order of 1=ðMc2Þ
are very small, the differences between our relativistic
contributions and those of BD are mainly due to the
differences in basis sets used in the calculations rather
than to the treatments of the nuclear mass dependence.
After correcting the units conversion error in Ref. [14],

the Ak coefficients computed by BD agree with our values
to 5, 6, 4, and 5 digits for k ¼ 0; 2; 4; 6, respectively. For
k ¼ 0, the discrepancy is mainly due to the 1=c3 terms not
considered by BD. The reasons for the low accuracy of A4

are unclear. Due to the smallness of the relativistic con-
tributions to Ak, the overall agreement is good despite the
fact that the relativistic contributions from BD work are
significantly less accurate than ours.

In Table I, we present the dynamic polarizability of 4He.
In addition to the contributions discussed earlier, we
included the effect of finite nuclear size which is almost
negligible. The dispersion part of αð632.9908Þ, i.e., the
contribution explicitly dependent on wavelength, agrees to
six significant digits with the result of BD (after conversion
errors are corrected) due to the high, eight-digit accuracy of

BD’s αð0Þ2 contribution. However, the total polarizability
obtained by us differs significantly from BD’s result: only
five digits agree and the discrepancy is about 22 ppm. As
already discussed, this difference is mainly due to the QED
effects neglected by these authors. The second source of the
difference is our significantly improved value of the static
relativistic component. The uncertainty of our recom-
mended value of αð632.9908Þ amounts 0.14 μa30, i.e.,
about 0.1 ppm. This accuracy is sufficient for the purpose
of the new pressure standard but one should ask if any
neglected effects could contribute above the uncertainty
estimate. The potential candidates are the QED recoil

correction αð31Þ0 of the order of 1=ðMc3Þ, the QED con-

tribution to the polarizability dispersion αð30Þ2 of the order of
1=c3 and, finally, and probably most importantly, the

remaining, other than one-loop contributions to αð40Þ0 of
the order of 1=c4. We conservatively estimated the possible
magnitudes of the neglected contributions and found that
their sum should be below 0.1 ppm. This uncertainty is
already included in the final error bar given in Table I.
The virial expansion for the refractive index can be

written as

n ¼ 1þ anρþ bnρ2 þ cnρ3 þ � � � ; ð14Þ

an ¼ 2πðαþ χÞ; ð15Þ

bn ¼ 2π

�
αbε þ

1

3
πα2 þ χbμ þ

1

3
πχ2 þ 2παχ

�
; ð16Þ

cn ¼ 2π

�
αcε þ

2

3
πα2bε þ

10

9
π2α3

�
; ð17Þ

where ρ is density, bε and cε are the dielectric virial
coefficients, and bμ is the magnetic permeability virial
coefficient. We have written down the term χbμ in Eq. (16),
but we will neglect it in numerical calculations since χ is
about 5 orders of magnitude smaller than α and bμ
(unknown) is expected to be at the most of the same order
as bε. We completely ignored the magnetic part of cn in
Eq. (17). After Eq. (14) is squared, it becomes consistent
with Eq. (4) of Ref. [6] within the terms included there
except that the factor of 2 is missing in front of the A2

εbρ2

term. Equation (14) can be easily solved for ρ and the
resulting formula can be used for a determination of
density, or, when combined with the virial equation of
state, also for a determination of pressure.

TABLE I. Dynamic polarizability of 4He [a30] at
λ ¼ 632.9908 nm.

Static Nonrelativistic 1.383 809 98641(1)
1=c2a −0.000 080 4534ð1Þ
1=c3b 0.000 030 655(1)
1=c4 0.000 000 56(14)
Finite nuclear sizec 0.000 000 0217(1)
Total 1.383 760 77(14)

λ−2 Nonrelativistic 0.007 995 7979(1)
Relativisticd −0.000 000 1721ð1Þ
Total 0.007 995 6258(1)

λ−4 Nonrelativistic 0.000 054 8363(1)
Relativistic 0.000 000 00014(1)
Total 0.000 054 8364(1)

λ−6 Nonrelativistic 0.000 000 4076(1)
Relativistic 0.000 000 0000(1)
Total 0.000 000 4076(1)

λ−8 Nonrelativistic 0.000 000 0032(1)

αðλÞ − αð0Þ Presente 0.008 050 8730(1)
BDf 0.008 050 871

Total Present 1.391 811 64(14)
BDg 1.391 780 800

aIncludes the recoil correction of the order of 1=ðMc2Þ equal
to −0.000 000 0935ð1Þ.
bFrom Ref. [1], except for the contribution from the electric field
derivative of the Bethe logarithm equal to 0.000 000 182(1) [18].
cComputed adding the correction term ð4=3Þπr2α½δðr1Þ þ δðr2Þ�
to H, where rα ¼ 1.676 fm is the nuclear charge radius of 4He.
dIncluding the recoil correction of the order of 1=ðMc2Þ
equal to −0.000 000 00075ð1Þ.
eThe contribution of the λ−10 term, amounting to 2.5 × 10−11,
is negligible.
fCalculated using correctly converted Ak constants. Equation (15)
of Ref. [14] gives 0.008 052 951, i.e., 0.03% error resulting in
1.7 ppm error in the total value of αð632.9908Þ.
gUsing the static value of BD equal to 1.383 729 929.
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The virial coefficients are presented in Table II. The
agreement with the measurement of Schmidt et al. [6] is
excellent, to within 1.4� 9.1 ppm. Note that the authors of
Ref. [6] reported the value of ar with a subtracted magnetic
contribution 4πχ=3 ¼ −0.0000080 cm3=mol, which was
added back in Table II. The agreement of theory with
measurements at 632.9908 nm [19–21] is, however, poor,
as noticed earlier by BD [14] and by Stone and Stejskal [9].
The disagreement with the measurement of Leonard [22] is
smaller, only about twice the experimental uncertainty. The
apparent better agreement of theory with this experiment
(within 1σ) found in Ref. [14] was due to the neglect [14]
of the nonlinear dependence of density on pressure. The
values of bn and cn presented in Table II have uncertainties
due entirely to uncertainties of bε and cε. The third and
fourth term in Eq. (16) make negligible contributions and
there is substantial cancellation between the first two terms.
The experimental bn determined from the values measured
in Ref. [20] is consistent with zero, which is almost within
the combined theoretical and experimental uncertainties.
From our data and from the bεðTÞ data of Ref. [24],
we predict that bn will vanish only around 415 K. Since

bn is small at T ¼ 273.16 K and higher temperatures,
its accuracy is sufficient to predict n − 1 with a 1 ppm
uncertainty for pressures up to 10 MPa.

We thank Dr. Jay Hendricks and Dr. Jack Stone for
suggesting the subject and valuable discussions and Dr.
MikeMoldover for comments on the manuscript. This work
was supported by the NIST Grant No. 60NANB13D209,
NSF Grant No. CHE-1152899, Polish Ministry of Science
Grant No. NN204 182840, and National Science Center
Grant No. 2011/01/B/ST4/00733.

[1] G. Łach, B. Jeziorski, and K. Szalewicz, Phys. Rev. Lett. 92,
233001 (2004).

[2] M. Przybytek, W. Cencek, J. Komasa, G. Łach, B. Jeziorski,
and K. Szalewicz, Phys. Rev. Lett. 104, 183003 (2010).

[3] W. Cencek, M. Przybytek, J. Komasa, J. B. Mehl, B.
Jeziorski, and K. Szalewicz, J. Chem. Phys. 136, 224303
(2012).

[4] M. R. Moldover, R. M. Gavioso, J. B. Mehl, L. Pitre,
M. de Podesta, and J. T. Zhang, Metrologia 51, R1 (2014).

[5] J. Hendricks, J. Ricker, P. Egan, and G. Strouse, Phys.
World 67, 13 (2014).

[6] J. W. Schmidt, R. M. Gavioso, E. F. May, and M. R.
Moldover, Phys. Rev. Lett. 98, 254504 (2007).

[7] P. J. Mohr, B. N. Taylor, and D. B. Newell, Rev. Mod. Phys.
84, 1527 (2012).

[8] W. Cencek, J. Komasa, and K. Szalewicz, J. Chem. Phys.
135, 014301 (2011).

[9] J. A. Stone and A. Stejskal, Metrologia 41, 189 (2004).
[10] J. H. Hendricks (private communication).
[11] K. Pachucki, J. Phys. B 31, 3547 (1998).
[12] K. Pachucki, Phys. Rev. A 74, 022512 (2006).
[13] A. K. Bhatia and R. J. Drachman, Can. J. Phys. 75, 11

(1997).
[14] A. K. Bhatia and R. J. Drachman, Phys. Rev. A 58, 4470

(1998).
[15] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of

One- and Two-Electron Systems (Springer-Verlag, Berlin
and New York, 1957).

[16] W. Cencek, K. Szalewicz, and B. Jeziorski, Phys. Rev. Lett.
86, 5675 (2001).

[17] K. Pachucki and J. Sapirstein, Phys. Rev. A 63, 012504
(2000).

[18] M. Puchalski, J. Komasa, B. Jeziorski, and K. Szalewicz
(unpublished).

[19] H. J. Achtermann, G. Magnus, and T. K. Bose, J. Chem.
Phys. 94, 5669 (1991).

[20] H. J. Achtermann, J. G. Hong, G. Magnus, R. A. Aziz, and
M. J. Slaman, J. Chem. Phys. 98, 2308 (1993).

[21] K. P. Birch, J. Opt. Soc. Am. A 8, 647 (1991).
[22] P. J. Leonard, At. Data Nucl. Data Tables 14, 21 (1974).
[23] L.W. Bruch and F. Weinhold, J. Chem. Phys. 117, 3243

(2002); 119, 638(E) (2003).
[24] A. Rizzo, C. Hättig, B. Fernandez, and H. Koch, J. Chem.

Phys. 117, 2609 (2002).
[25] D. F. Heller and W.M. Gelbart, Chem. Phys. Lett. 27, 359

(1974).

TABLE II. Virial expansion of refractive index. ar ¼ 2
3
an, bn,

and cn are in units of cm3=mol, cm6=mol2, and cm9=mol3,
respectively, and λ is in nm. 1 cm3=mol ¼ 11.205 8721 a30.

arð0Þ Present 0.517 246 21(6)a,b

Experimental [6] 0.517 245 5(47)
arð632.9908Þ Present 0.520 255 64(6)c,d

Experimental [19,20] 0.521 3(1)
Experimental [21] 0.522 0(3)

arð546.2268Þ Present 0.521 297 25(6)
Experimental [22] 0.521 57(15)e

bnð0Þ Present, 273.16 K 0.0245(2)f

bnð632.9908Þ Present, 273.16 K 0.0238(2)f

Present, 302 K 0.0184(2)f

Present, 323 K 0.0151(2)f

Experimental [20] 0.000(15)g

cnð0Þ Present, 273.16 K −0.93ð25Þf
aan ¼ 8.694 292 2ð9Þ a30 or 0.775 869 31ð8Þð4Þ cm3=mol,
where the second uncertainty originates from the Avogadro
constant 6.022 141 29ð27Þ × 1023.
bComputed using χ ¼ −0.000 021 194ð1Þ a30 [23], the uncertainty
reflects the estimated size of relativistic contributions.
can ¼ 8.744 8758ð9Þ a30 ¼ 0.780 383 35ð8Þð4Þ cm3=mol.
dWe neglected the frequency dependence of χ, a relativistic
effect expected to be very small.
eInferred from measured value of n − 1 ¼ 34.895ð10Þ × 10−4

at T ¼ 273.16 K and p ¼ 101.325 kPa.
fComputed using bε ¼ −0.0978ð2Þ cm3=mol [24] (uncertainty
estimated based on comparison with Ref. [8]) and cε¼
−1.34ð36Þcm6=mol2 [6,25], at T¼273.16K. For other T:
bεð303Þ¼−0.1065ð2Þcm3=mol and bεð323Þ¼−0.1107ð2Þcm3=
mol [24].
gComputed from ar ¼ 0.5213ð1Þ cm3=mol and br ¼ 2

3
bn−

1
4
ar ¼ −0.068ð10Þ cm6=mol2 measured in Ref. [20], same

value obtained for both temperatures.
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