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Extensions of Einstein gravity with higher-order derivative terms arise in string theory and other
effective theories, as well as being of interest in their own right. In this Letter we study static black-hole
solutions in the example of Einstein gravity with additional quadratic curvature terms. A Lichnerowicz-
type theorem simplifies the analysis by establishing that they must have vanishing Ricci scalar curvature.
By numerical methods we then demonstrate the existence of further black-hole solutions over and above the
Schwarzschild solution. We discuss some of their thermodynamic properties, and show that they obey the
first law of thermodynamics.
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The well-known problem of the nonrenormalizability of
Einstein gravity has given rise to many attempts to view it
as an effective low-energy theory that will receive higher-
order corrections that become important as the energy scale
increases (see, for example, Ref. [1]). In string theory, the
Einstein-Hilbert action is just the first term in an infinite
series of gravitational corrections built from powers of the
curvature tensor and its derivatives. In other approaches,
only a finite number of additional terms might be added. It
was shown in Ref. [2] that if one adds all possible quadratic
curvature invariants to the usual Einstein-Hilbert action one
obtains a renormalizable theory, albeit at the price of
introducing ghostlike modes. Arguments have been given
for why these might not be fatal to the theory (for example,
see Ref. [3] for a recent discussion). In any case, it is
worthwhile to study in detail the properties of the theory of
Einstein gravity with added quadratic curvature terms, in
order to shed light on the question of whether it has
irredeemable pathologies or whether they can be controlled
in some manner.
Black holes are the most fundamental objects in a

theory of gravity, and they provide powerful probes for
studying some of the more subtle global aspects of the
theory. It is therefore of considerable interest to inves-
tigate the structure of black-hole solutions in theories of
gravity with higher-order curvature terms. In this Letter,
we report on some investigations of the static, spherically
symmetric black-hole solutions in four-dimensional
Einstein-Hilbert gravity with added quadratic curvature
terms, for which the most general action can be taken
to be

I ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðγR − αCμνρσCμνρσ þ βR2Þ; ð1Þ

where α, β, and γ are constants and Cμνρσ is the Weyl
tensor. We shall work in units where we set γ ¼ 1, and
the equations of motion following from Eq. (1) are then

Rμν −
1

2
Rgμν − 4αBμν þ 2βR

�
Rμν −

1

4
Rgμν

�

þ 2βðgμν□R −∇μ∇νRÞ ¼ 0; ð2Þ

where Bμν ¼ ð∇ρ∇σ þ 1
2
RρσÞCμρνσ is the Bach tensor,

which is trace free.
In general, the theory describes a system with a massive

spin-2 mode with mass squared m2
2 ¼ 1=ð2αÞ and a

massive spin-0 mode with mass squared m2
0 ¼ 1=ð6βÞ,

in addition to the massless spin-2 graviton. These massive
modes will be associated with rising and falling Yukawa
type behavior in the metric modes near infinity [4], of the
form ð1=rÞe�m2r and ð1=rÞe�m0r. In particular, one can
expect that if the generic initial data are set at some small
distance, the rising exponentials will eventually dominate,
leading to singular asymptotic behavior. In seeking black-
hole solutions, the question then arises as to whether the
rising exponentials can be avoided for appropriately finely
tuned initial data.
It can easily be seen that any solution of pure Einstein

gravity will also be a solution of Eq. (2), and so in particular
the usual Schwarzschild black hole continues to be a
solution in the higher-order theory. The question we wish
to address, then, is whether there exist any other static black
hole solutions, over and above the Schwarzschild solution.
Static, spherically symmetric black-hole solutions have

been investigated in Ref. [5], using generalizations of the
Lichnerowicz and Israel theorems for Einstein gravity.
Since we will arrive at somewhat different conclusions,
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we shall briefly summarize the key elements in Ref. [5],
although derived in a different notation. We consider static
metrics of the form ds24 ¼ −λ2dt2 þ hijdxidxj, where λ and
hij are functions only of the three spatial coordinates xi.
Taking the trace of the field equations (2) gives
βð□ −m2

0ÞR ¼ 0. We then multiply this by λR and inte-
grate over the spatial domain from a putative horizon out to
infinity. Expressed in terms of the covariant derivative Di
with respect to the spatial 3-metric hij, this givesZ ffiffiffi

h
p

d3x½DiðλRDiRÞ − λðDiRÞ2 −m2
0λR

2� ¼ 0: ð3Þ

Since λ vanishes on the horizon, it follows that if DiR goes
to zero sufficiently rapidly at spatial infinity the total
derivative (i.e., surface term) gives no contribution, and
the nonpositivity of the remaining terms then implies
R ¼ 0. In other words, as shown in Ref. [5], any static
black-hole solution of Eq. (1) must have a vanishing Ricci
scalar. This leads to a great simplification, and it means that
one can, without loss of generality, study the case of pure
Einstein-Weyl gravity [i.e., Eq. (1) with β ¼ 0], since
obviously the term quadratic in R makes no contribution
to the field equations for a configuration with R ¼ 0.
Furthermore, the trace of the field equations (2) for
Einstein-Weyl gravity immediately implies R ¼ 0. In fact,
the two differential equations for h and f are both now of
only second order in derivatives.
The second stage of the discussion in Ref. [5] then

involved looking at the remaining content of Eq. (2), i.e.,
the nontrace part. According to Ref. [5], this led to another
integral identity that then implied, under certain assump-
tions, that Rμν ¼ 0. If this were correct, then the conclusion
would be that the usual Schwarzschild solution is the only
static black hole solution of the theory described by Eq. (1).
However, we find that there are sign errors in the expression
given in Ref. [5]. Setting R ¼ 0, as already argued above,
multiplying Eq. (2) by λRμν, and then integrating over the
spatial region outside the horizon givesZ ffiffiffi

h
p

d3x

�
DiWi −

1

4
λðDiR̄ − 4DjRijÞ2 þ 4λðDjRijÞ2

− 4λðD½iRj�kÞ2 þ λðDiRjkÞ2 −
1

4
λR̄2ðm2

2 þ R̄Þ

− λðm2
2R

ijRij − 2RijRjkRk
iÞ
�
¼ 0; ð4Þ

where Wi¼ λRjkDiRjkþ 1
4
λR̄DiR̄−2λRjkDjRik−λR̄DjRi

j

and R̄ is the Ricci scalar of the spatial metric hij. Although
the surface term will give zero, the mix of positive and
negative signs in the bulk terms precludes one from
obtaining any kind of vanishing theorem for the Ricci
tensor of the four-dimensional metric. This raises the
intriguing possibility that there might in fact exist static,
spherically symmetric black-hole solutions over and above
the Schwarzschild solution.

The equations of motion following from Eq. (1) are too
complicated to be able to solve explicitly, even for the case
of the static, spherically symmetric ansatz

ds2 ¼ −hðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ: ð5Þ

In our work, we have therefore carried out a numerical
investigation of the solutions. To do this, we begin by
supposing that there exists a black-hole horizon at some
radius r ¼ r0 > 0, at which the metric functions h and f
vanish, and we then obtain near-horizon Taylor expansions
for hðrÞ and fðrÞ, of the form

hðrÞ¼ c½ðr−r0Þþh2ðr− r0Þ2þh3ðr− r0Þ3þ�� ��;
fðrÞ¼ f1ðr−r0Þþf2ðr− r0Þ2þf3ðr− r0Þ3þ�� � : ð6Þ

Substituting into the equations of motion (2), with β set to
zero for the reasons discussed above, the coefficients hi and
fi for i ≥ 2 can be solved for in terms of the two nontrivial
free parameters r0 and f1. There is also a “trivial”
parameter, corresponding to the freedom to rescale the
time coordinate, which we have accordingly written in the
form of an overall scaling of hðrÞ. Thus, we have

h2 ¼
1 − 2f1r0

f1r20
þ 1 − f1r0

8αf21r0
;

f2 ¼
1 − 2f1r0

r20
−
3ð1 − f1r0Þ
8αf1r0

;

and so on. [We used Taylor expansions to O(ðr − r0Þ9) in
our numerical integrations.] The Schwarzschild solution
corresponds to f1 ¼ 1=r0, and so it is convenient to
parametrize f1 as

f1 ¼
1þ δ

r0
; ð7Þ

with nonvanishing δ characterizing the extent to which the
near-horizon solution deviates from the Schwarzschild
solution.
We use the expansions to set the initial data at a radius ri

just outside the horizon, and then use numerical routines in
MATHEMATICA to integrate the equations out to a large
radius. Generically, one finds that for a given choice of the
parameters r0 and δ the solution rapidly becomes singular
as one integrates outwards from r ¼ ri, as expected in view
of our earlier observations about the rising Yukawa terms in
the asymptotic form for the metric. If we fix a particular
value for r0, we can then use the shooting method to try to
home in on a special value of δ for which the outward
integration can proceed without encountering a singularity.
Of course, in practice, because of accuracy limitations in
the integrations, the solution will always eventually become
singular at large enough r. The signal for a good black-hole
solution is that fðrÞ and hðrÞ should approach constants as
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r increases [in fact Ricci scalar flatness implies fðrÞ must
approach 1], and that by stepping up the accuracy and
precision goals in the calculations one can extend at will the
maximum upper limit r ¼ rf for which the smooth
behavior can be achieved. In practice, by running the
routines with accuracy and precision goals of order 20
decimal places, we have been able to obtain very clean and
trustworthy solutions out to at least 60 times the horizon
radius.
Our findings are that there exists a range of values for the

horizon radius, bounded below by a certain multiple of the
length

ffiffiffi
α

p
, for which we can obtain precisely one static

black-hole solution in addition to the Schwarzschild
solution. In order to make the statement of our results in
the most concise possible way, it is convenient, without loss
of mathematical generality, to make a specific choice for
the value of α in Eq. (1). We shall take

α ¼ 1

2
: ð8Þ

We then find that for each choice of r0 > rmin
0 , where

rmin
0 ≈ 0.876; ð9Þ

we can find a non-Schwarzschild static black hole. For each
such r0, there is a corresponding value δ ¼ δ� of the “non-
Schwarzschild parameter” that yields the black-hole sol-
ution without a singularity at spatial infinity. As r0 is taken
closer and closer to the value rmin

0 , the required value δ�
becomes smaller and smaller, tending to zero at r0 ¼ rmin

0 .
Thus, the Schwarzschild and the non-Schwarzschild black
holes “coalesce” as r0 ¼ rmin

0 is approached.
As r0 is increased above rmin

0 , the Schwarzschild and
non-Schwarzschild black-hole solutions separate more
from one another (and in particular the required value of
δ increases). The mass of the Schwarzschild black hole is
simply 1

2
r0, and thus it increases linearly as r0 increases. By

contrast, the mass of the non-Schwarzschild black hole
decreases as r0 increases, until at r0 ¼ rm¼0

0 it becomes
massless, where

rm¼0
0 ≈ 1.143: ð10Þ

[The definition of mass in higher-derivative theories was
discussed in Refs. [6,7]. For asymptotically flat black holes
it is just 1

2
the coefficient of 1=r in gtt (assuming gtt is

normalized canonically at infinity).] Interestingly, if r0 is
increased beyond rm¼0

0 , one can still obtain a non-
Schwarzschild black-hole solution for an appropriate
choice of δ, but now the mass is actually negative. In
other words there is still a regular horizon, and the metric is
asymptotically flat at large distances, but the metric
function f now rises above 1 as r increases from ri, before
sinking down to 1 again in the asymptotic region. Figure 1
shows the masses of the Schwarzschild and non-
Schwarzschild black holes as a function of r0, and their
masses as functions of their Hawking temperatures.

The maximum possible mass for the non-Schwarzschild
black hole, attained when r0 ¼ rmin

0 , is given by Mmax ¼
1
2
rmin
0 ≈ 0.438. From the slope of MðTÞ it can be seen that

the specific heat C ¼ ∂M=∂T is negative for both black
holes, and more negative for the non-Schwarzschild black
hole at a given temperature.
The plots of the metric functions f and h for the

examples of a positive-mass black hole with r0 ¼ 1 and
a negative-mass black hole with r0 ¼ 2 are shown in Fig. 2.
Having established the existence of the non-

Schwarzschild black holes, it is instructive to study some
of their thermodynamic properties, and to compare these
with the properties of the Schwarzschild black holes. In
order to do this, we collected the numerical results for a
sequence of black-hole solutions with r0 in the range rmin

0 ≈
0.876 < r0 < 1.5, and then fitted the data to appropriate
polynomials. Because we are working with a higher-
derivative theory, the entropy is not simply given by one
quarter of the area of the event horizon, and instead we need
to use the formula derived by Wald [8,9]. This has been
evaluated for the ansatz (5) in quadratic curvature gravities
in Ref. [10], and applied to our case with β ¼ 0 and
γ ¼ 1 in Eq. (1) this gives S ¼ πr20 þ 4παð1 − f1r0Þ ¼
πr20 − 4παδ�. (There is a freedom to add a constant multiple
of the Gauss-Bonnet invariant to the Lagrangian, which
shifts the entropy by a parameter-independent constant
without affecting the equations of motion. We have used
this to ensure the entropy of the Schwarzschild black hole
vanishes when the mass vanishes.) We then find that the
mass and the temperature of these non-Schwarzschild black
holes, as a function of the entropy, take the form
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FIG. 1. The masses as functions of r0 (left plot) and as functions
of the Hawking temperatures (right plot) for the Schwarzschild
(dashed line) and non-Schwarzschild (solid line) black holes.
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FIG. 2 (color online). The non-Schwarzschild black hole for
r0 ¼ 1 (left plot) and r0 ¼ 2 (right plot). In each plot the upper
curve is fðrÞ and the lower curve is hðrÞ. For clarity we have
chosen a rescaling of h so that it approaches 3

4
, rather than 1, to

avoid an asymptotic overlap of the curves.
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M ≈ 0.168þ 0.131S − 0.00749S2 − 0.000139S3 þ � � � ;
T ≈ 0.131 − 0.0151S − 0.000428S2 þ � � � : ð11Þ

It can be seen that ∂M=∂S≈0.131−0.0150S−0.000417S2,
which is very close to the expression for the temperature.
Thus, the non-Schwarzschild black holes are seen to obey
the first law dM ¼ TdS to quite a high precision. Note that
the expressions for M and T as a function of S for the
Schwarzschild black holes are very different in form, with
M ¼ ðS=4πÞ1=2 and T ¼ 1

4
ðπSÞ−1=2.

It is interesting to note that the entropy of the non-
Schwarzschild black hole of a given mass is always less
than the entropy of the Schwarzschild black hole of the
same mass. The two entropies approach each other asymp-
totically as r0 approaches rmin

0 . This can be seen in the left-
hand plot in Fig. 3. It is also of interest to look at the free
energy F ¼ M − TS as a function of temperature. This is
shown in the right-hand plot in Fig. 3. It can be seen that the
free energy is always larger for the non-Schwarzschild
black hole at a given temperature, with the two curves again
meeting at the lower limit when r0 ¼ rmin

0 .
In this Letter, we have used black holes to probe some of

the consequences of interpreting the action (1) as a
complete classical action in its own right. We have seen
that there exists a second branch of static, spherically
symmetric black holes, over and above the Schwarzschild
solutions. These are not Ricci flat, although they do have a
vanishing Ricci scalar. Restoring the factors of α and γ that
we fixed in our numerical simulations, the second branch of
black holes has masses, which can become negative,
bounded approximately by M ≤ 0.438

ffiffiffiffiffiffiffiffi
2αγ

p
. Thus, in a

regime where α is small, which one might hope would
correspond to a small correction to Einstein gravity, the
second branch of black holes will be tiny, and will actually
have very large curvature near the horizon, thus tending to
invalidate the requirement that the curvature squared should
be small. The fact that their mass can be negative, violating
the usual positive-mass theorem of standard Einstein
gravity, indicates that the ghostlike nature of the quadrati-
cally corrected action is becoming dominant in this regime;
one may view the negative-mass black holes as condensates
dominated by the contribution of the ghostlike massive

spin-2 modes. It could be viewed as a satisfactory
outcome of our investigation that the only indications of
the existence of black holes with potentially pathological
properties in the quadratic-curvature theories occur in a
regime where yet higher-order corrections, as in string
theory, are going to be important also. It would be
interesting to obtain analytical proofs of the existence of
the numerical solutions we have found. Although this could
be challenging, it might perhaps be easier to obtain
restricted no-hair theorems that confirm the apparent
absence of non-Schwarzschild black holes outside the
parameter range where we have found them.
Naturally, the fourth-order equations of motion (2) have

wider classes of solutions than the black-hole solutions
with horizons that we have considered here. These were
initially investigated in Ref. [4] and will be given a more
detailed analysis, along with a more extensive analysis of
the black hole solutions, in Ref. [11].
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FIG. 3. The first plot shows the entropy as a function of mass
and the second shows the free energy F ¼ M − TS as a function
of T for the Schwarzschild (dashed line) and non-Schwarzschild
(solid line) black holes.
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