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Rough or patterned surfaces infused with a lubricating liquid display many of the same useful properties
as conventional gas-cushioned superhydrophobic surfaces. However, liquid-infused surfaces exhibit a new
failure mode: the infused liquid film may drain due to an external shear flow, causing the surface to lose its
advantageous properties. We examine shear-driven drainage of liquid-infused surfaces with the goal of
understanding and thereby mitigating this failure mode. On patterned surfaces exposed to a known shear
stress, we find that a finite length of the surface remains wetted indefinitely, despite the fact that no physical
barriers prevent drainage. We develop an analytical model to explain our experimental results, and find that
the steady-state retention results from the ability of patterned surfaces to wick wetting liquids, and is thus
analogous to capillary rise. We establish the geometric surface parameters governing fluid retention and
show how these parameters can describe even random substrate patterns.
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Liquid-infused surfaces demonstrate a remarkable array
of useful properties, from omniphobicity [1–3] and bio-
fouling resistance [4] to enhanced heat transfer [5,6] and
drag reduction [7–9]. Unlike traditional superhydrophobic
materials, liquid-infused surfaces are robust against pres-
sure-induced failure, making them particularly attractive
for submerged applications [10–16]. However, when these
surfaces are immersed in dynamic fluid environments,
external flow can shear away the infused liquid layer that
is responsible for their unique properties.
Robust implementation of liquid-infused surfaces thus

requires a thorough understanding of the dynamics of a
liquid lubricant trapped within a patterned substrate that is
exposed to shear. This fundamental shear-driven drainage
problem also applies to a wide variety of structurally similar
situations, including cleaning oily surface contaminants
from textiles [17], extraction of residual oil from permeable
rocks [18], liquid-vapor interactions in micropatterned heat
pipes [19,20], and the shear flow over hydrophobic mucus
trapped on rough biological tissue [21,22]. Existing theo-
ries that govern liquid films trapped in rough or patterned
surfaces are able to describe the process of imbibition
[23–26], the flow of a superficial fluid film above the height
of the underlying surface pattern [27,28], and the static
configurations of wetting drops [29]. In addition, the
steady-state shape of a shear- or gravity-driven film that
coats individual surface features has been explored
[30–33]. Despite these advances, current theories are
unable to predict whether a patterned surface will retain
an infused liquid when subjected to an external flow.
We report a series of experiments to study the behavior of

liquid-infused patterned surfaces exposed to the flow of an
immiscible liquid. A microfluidic flow cell was constructed
from transparent epoxy [34] with a patterned surface

imprinted on a section of its floor [Figs. 1(a)–1(c)]. The
surface pattern in this experiment consists of 50 streamwise
grooves with width w ¼ 8.8–9.2 μm and height h ¼
10.0 μm [Fig. 1(d)] that end upstream in a 1 by 1 mm well
of equal depth to create the open end shown schematically in
Fig. 2(c). The pattern is initially filledwith silicone oilmixed
with fluorescent dye (viscosity μo ¼ 42.7 or 201mPa s), and
connects to a downstream reservoir of oil at the terminus of
the flow cell. The external aqueous fluid (a 1∶1wtmixture of
glycerol and water, viscosity μaq ¼ 5.4 mPa s) enters the
upstream inlet of the device, and exits through a slot-shaped
outlet that is upstream of the terminus. This configuration
ensures that the draining oil does not block the flow of the
external phase, and that the external flow is not constricted as
it exits the device. The flow cell (height H ¼ 180 μm and
width W ¼ 7 mm) is thin but still much deeper than the
pattern, so that the flow profile is approximately parabolic
through its depth and uniform through itswidth. Thus, a flow
rate Q imposes a shear stress τyx ¼ 6μaqQ=WH2 on the
pattern.
Using microfabricated grooves to study lubricant drain-

age ensures a controlled and reproducible surface topog-
raphy that is invariant in the streamwise direction, thereby
providing a system amenable to a fluid dynamical descrip-
tion. The lessons learned from studying this geometry can
be applied to predicting the drainage behavior of surfaces
with more complicated topographies, as we demonstrate
below. Indeed, there is a strong precedent in the study of
capillary flows for such a “reduced-order” approach to
treating complicated geometries [23,28]. The particular
geometry of streamwise grooves also represents what
appears to be the “worst-case” surface configuration for
oil retention. This worst-case scenario is instructive for
evaluating many real-world liquid-infused surfaces, since
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rough surfaces inevitably have some degree of streamwise
connectivity—either by accident or by design—that allows
fluid in upstream portions of the pattern to drain
downstream.
The behavior of the oil phase was observed using

fluorescence macrophotography. A time series of photo-
graphs from a typical experiment is shown in Fig. 1(c),
demonstrating the characteristic drainage behavior (see
movie 1 in the Supplemental Material [35]): under the
influence of shear from the aqueous phase, the oil in the
upstream portion of the pattern dewets first, with a
dewetting front that propagates downstream. The front
initially propagates rapidly, before slowing and eventually
stopping at a steady-state streamwise position; the length of
fluid retained in the pattern between this final front location
and the slot-shaped outlet is defined as the steady-state
length L∞ [Fig. 1(c)].
Since the streamwise grooves terminate in a fluid

reservoir, there is no physical barrier to drainage of the
oil, and thus the existence of steady-state oil retention may

seem nonintuitive. To clarify the mechanism that leads to
oil retention, we perform identical experiments using a
confocal microscope, and observe the steady-state con-
figuration of the oil at the scale of the pattern itself.
Cross-sectional (yz-plane) images of the steady-state oil
distribution are taken at regular intervals in the streamwise
(x) direction along the length of the filled portion of the
groove. Two representative images are shown in Fig. 2(a).
The fluorescent oil (represented as red) is index matched
with the solid so that the interface between the oil or solid
and aqueous phase is visible in reflection (represented
as green).
The oil-aqueous interface is deflected inward towards the

substrate and appears to have a constant curvature κ in the
cross-sectional (yz) plane. Because the length of the filled
portion of the groove is much longer than the width or
height of the groove, this cross-sectional interfacial curva-
ture dominates over curvature in the streamwise or wall-
normal (xy) plane. The pressure drop across a curved
liquid-liquid interface is equal to κ multiplied by the surface
tension of the interface γ. Since the interface is deflected
inwards, the pressure is lower in the oil than in the aqueous
phase. Thus, the pressure within the oil decreases in the
direction opposite the flow of the external phase. This
adverse pressure gradient drives recirculation of the oil
trapped in the groove, countering the external shear stress,
and provides the physical mechanism for a steady-state
wetting configuration under shear.

FIG. 1 (color online). (a) Cross section of the microfluidic flow
cell, showing the configuration at the beginning of an experiment.
Distances in the y direction are exaggerated. The aqueous
solution (blue) flows in the left inlet and out the first (slot-
shaped) outlet. The grooves are filled with oil (green), and
connect to the reservoir of oil at the flow cell terminus. (b) This
planform view shows the entire device before drainage com-
mences. Low viscosity oil fills the 50 longitudinal grooves at the
center of the device and fluoresces green. (c) Snapshots of a
sample shear-driven drainage experiment subject to an aqueous
flow of Q ¼ 2 mL=min (τyx ¼ 5.2 Pa). (d) Micrograph of the
silicon wafer micropattern that is used to mold the grooves,
including the surface profile (purple). Grooves appear dark gray
and walls appear light gray.
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FIG. 2 (color online). (a) Representative groove cross sections
from the steady-state configuration of an experiment conducted at
Q ¼ 2 mL=min with low viscosity oil, taken at the outlet slot
(x ¼ 0 mm) and the far upstream end of the wetted groove
(x ¼ −5.5 mm). (b) The steady-state deflection at the center of
the groove δðxÞ with theoretical predictions (Supplemental
Material [35]) plotted as dashed lines. Gray is low viscosity
oil at Q ¼ 2 mL=min, red is high viscosity oil at the same flow
rate, and blue is low viscosity oil at Q ¼ 1 mL=min. (c) Sche-
matic of one groove, showing geometric parameters and the
shape of the interface deduced from (b).
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We note that this explanation of the oil retention
mechanism rests on a number of assumptions about the
system: the Reynolds number in the oil ρoτyxh2=μ2o ≪ 1,
indicating negligible inertial effects, and the Bond number
w2gðρaq − ρoÞ=γ ≪ 1 , indicating that gravity is negligible.
These assumptions apply to most applications of liquid-
infused surfaces. Furthermore, we ignore long-range forces
(such as van der Waals); though this assumption is valid for
the microscale patterns of the current experiment, long-
range forces may be relevant for certain chemistries on
surfaces with nanoscale geometries. Finally, we assume
that μo ≫ μaq, so that the shear stress imposed by the
aqueous flow is effectively unchanged by the oil.
The adverse pressure gradient driving oil in the upstream

direction depends on the gradient in the curvature of the
interface over the length of the groove. At the downstream
end, where the aqueous fluid exits the flow cell, the
interface is flat, indicating a zero pressure drop across
the interface. At the upstream end, the minimum radius of
curvature rmin is determined by the groove width w and the
receding contact angle θ or, for wider grooves, the aspect
ratio of the groove w=h. The interfacial deflection at the
groove center δ varies as δ ∼ x between these two limits, as
shown in Fig. 2(b). Since δ ∼ κ for small deflections, dκ=dx
is approximately constant, indicating that the pressure
gradient within the oil is constant.
We now construct a quantitative model to predict the

dynamics of drainage from the grooved pattern based on
the flow reversal mechanism we inferred from interfacial
measurements. Our goal is to predict how the wetted length
of the groove LðtÞ evolves under the action of an applied
shear stress τyx. The most direct approach to determining
LðtÞ is to develop a volume-balance conservation equation
for the flux of oil out of the groove. Details of the derivation
are provided in the Supplemental Material [35], but we
outline the model now.
The time derivative of the volume of oil in a groove of

filled length LðtÞ is given by cdwhdL=dt, where cd is a
constant that depends on the aspect ratio of the groove w=h,
and represents the average fraction of the groove’s cross
section wh that is oil filled. This time derivative must equal
the sum of the downstream flux of oil driven by shear and
the upstream flux of oil driven by the pressure gradient.
The oil flux induced by a shear stress τyx is given by
−csτyxwh2=μo, where the sign indicates that the flux acts to
decrease the volume of oil in the groove. The constant cs
depends on the aspect ratio w=h, and accounts for the
hydrodynamic resistance imposed by the walls and floor of
the groove. The flux of oil driven upstream by the pressure
gradient can be related to the change in interfacial curvature
over the wetted length of the groove, as described above.
The total pressure drop is proportional to 1=rmin; the
pressure gradient is distributed along the oil-filled length
and is therefore proportional to 1=L. Thus, the pressure-
driven recirculation flux is given by cpwh3γ=ðμorminLÞ,

where cp is another hydrodynamic resistance constant
dependent on w=h. Summing these three terms to enforce
volume conservation yields

cdwh
dL
dt

¼ − csτyxwh2

μo
þ cpwh3γ

μormin

1

L
: ð1Þ

The steady-state length of oil L∞ is found by setting the
left-hand side of Eq. (1) equal to zero, yielding

L∞ ¼
�

cph

csrmin

�
γ

τyx
; ð2Þ

where the prefactor contains all effects of the groove
geometry. Using L∞ as a length scale for nondimension-
alizing Eq. (1), a corresponding time scale is tc ¼ cdcpμoγ=
ðc2srminτ

2
yxÞ, thus yielding a nondimensional ordinary differ-

ential equation with no free parameters; this equation
appears in the same form as the Lucas-Washburn equation
that describes the dynamics of capillary rise [37,38]. Thus,
L∞ is a shear-driven equivalent to the classical capillary
rise height, and results from the ability of patterned surfaces
to wick wetting fluids.
The proposed model for groove drainage was validated

against macroscale measurements of how the wetted
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FIG. 3 (color online). Drainage curves for grooves, plotted as
length versus time, with dimensional results in (a) and (c) and
nondimensional results in (b) and (d). Gray is low viscosity oil at
Q ¼ 2 mL=min, red is high viscosity oil at the same flow rate,
and blue is low viscosity oil at Q ¼ 1 mL=min. The theoretical
prediction from the Supplemental Material [35] is plotted in
dashed black. Top row [panels (a) and (b)] shows the effect of
varying flow rate and bottom row [panels (c) and (d)] shows the
effect of varying the oil viscosity. Each line represents the average
wetted length of all of the defect-free grooves from one experi-
ment. Most experiments contain surface defects that cause
multiple grooves to drain with a different behavior (≈5–10 of
the 50 grooves in each experiment); these grooves are excluded
from the averaging. The plot includes multiple experiments
conducted with low viscosity oil at the higher flow rate in order
to indicate the degree of natural variability in the data.
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length of the grooves changes as a function of time.
Figures 3(a)–3(b) show the measured drainage behavior
at two different shear rates, and how the nondimensional
scales collapse both drainage trends towards the universal
theoretical prediction. An important consequence of the
analysis is that the steady-state length L∞ does not depend
on the viscosity of the fluid in the groove μo [see Eq. (2)].
Thus, μo can be used as a design parameter in the
construction of liquid-infused materials without influenc-
ing the oil retention properties. The viscosity independence
was validated by repeating the above experiments with two
different oils whose viscosities differ by an order of
magnitude. Despite the different drainage rates between
the two oils, the steady-state wetted lengths were roughly
the same, as shown in Figs. 3(c)–3(d).
Another significant design consequence is that the

steady-state length is independent of the groove size.
Though the groove aspect ratio enters the formula for
L∞, through cp, cs, and h=rmin, the magnitude of the
groove size is not important. Grooves with the same aspect
ratio should have identical steady-state lengths, regardless
of whether the depth is 1 μm or 1 mm. However, when w or
h falls into the nanoscale range, long-range forces may
modify the retention behavior; conversely, if these dimen-
sions or τyx become too large, the Reynolds number or
Bond number may no longer be low enough for our
analysis to remain valid.
Within the parameter range of our analysis, L∞ depends

on only the surface tension, contact angle (through rmin),
and groove aspect ratio, so that options for designing a
surface to retain lubricant are limited. In most cases, the
surface tension and the contact angle cannot be considered
adjustable parameters because of the need to prevent the oil
from “cloaking” sessile drops [2,3,39,40]. Thus, the aspect
ratio of the grooves w=h is the primary means of tuning oil
retention, and the steady-state length in Eq. (2) depends
strongly on this parameter.
To explore the dependence of drainage behavior on

aspect ratio, surfaces with grooves of different width and
different depth were fabricated and tested at three flow rates
(see the Supplemental Material [35]). The steady-state
length L∞ is plotted in Fig. 4(a) along with the theoretical
prediction, where L∞ has been normalized by γ=τyx in
order to isolate effects of the aspect ratio. These results
demonstrate that narrower and deeper grooves result in
longer L∞. Figure 4(b) shows how cp and cs vary as a
function ofw=h. Note that 2=3 < cp=cs < 1, so that groove
geometry affects L∞ in Fig. 4(a) primarily through h=rmin.
We noted earlier that longitudinal grooves provide a

reduced-order perspective on a variety of more complicated
patterned surfaces, and thus we expect surfaces with a
random pattern to follow a similar drainage behavior. To
demonstrate the general nature of our findings, we repeated
the drainage experiments on a surface with a microfabri-
cated geometry consisting of randomly placed 10-μm

cubes. The film drains from the random posts following
a similar behavior: as with the grooves, a finite length of the
pattern remains fully wetted (see Fig. 5 and movie 2 of the
Supplemental Material [35]). The retention of fluid under
shear is therefore not unique to well-controlled surface
geometries, and may be expected on surfaces with indus-
trially fabricated patterns that are inherently more random.
Our findings suggest a methodology for designing

liquid-infused materials capable of retaining their lubricant
up to a design-limited shear stress. We have shown that the
value of this limiting shear can be tuned by manipulating
the aspect ratio of the surface pattern. Extrapolating further,
the theory suggests a method by which any existing
patterned surface may be made resistant to shear-driven
drainage: we predict that oil can be retained indefinitely if
surface features are interrupted by periodic barriers with a
period less than or equal to L∞. For instance, if a grid of
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FIG. 4 (color online). (a) Steady-state length L∞, normalized
by γ=τyx, for varying groove aspect ratio, with low viscosity oil;
Q ¼ 2 mL=min (red), Q ¼ 1 mL=min (blue), and Q ¼
0.5 mL=min (orange). Squares are for grooves with
h ≈ 10 μm, and circles are for grooves with h ≈ 20 μm. The
theoretical prediction from Eq. (2), L∞τyx=γ ¼ 2cph=csrmin, is
given by the dashed line. (b) Groove resistance coefficients cp
(green), cs (purple), and the ratio cp=cs (black) as a function of
aspect ratio w=h. Each curve asymptotes to the dashed line of the
same color.
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FIG. 5 (color online). (a) Snapshots of a shear-driven drainage
experiment on a substrate consisting of randomly placed posts. A
script was written in MATLAB to define the uniformly random
locations of the cubes on a 1-μm grid subject to two conditions:
(1) that the area density of the posts is 25%, and (2) that the
minimum space between posts is 3 μm (to aid with photolithog-
raphy). The pattern is initially filled completely with low
viscosity oil (green). The oil drains due to an external aqueous
flow of Q ¼ 0.5 mL=min. (b) Micrograph of the silicon wafer
micropattern that is used to mold the posts (light gray), including
a surface profile (purple).
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barriers with period L∞ is overlaid on a random rough
pattern, the surface will be expected to retain its lubricant
up to the shear value used to determine L∞. Such minimally
structured geometries, designed according to the insights
from this study, will allow for greater adoption of liquid-
infused surfaces by enabling their use in applications where
they would otherwise fail.
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