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Synaptic democracy concerns the general problem of how regions of an axon or dendrite far from the cell
body (soma) of a neuron can play an effective role in neuronal function. For example, stimulated synapses
far from the soma are unlikely to influence the firing of a neuron unless some sort of active dendritic
processing occurs. Analogously, the motor-driven transport of newly synthesized proteins from the soma to
presynaptic targets along the axon tends to favor the delivery of resources to proximal synapses. Both of
these phenomena reflect fundamental limitations of transport processes based on a localized source. In this
Letter, we show that a more democratic distribution of proteins along an axon can be achieved by making
the transport process less efficient. This involves two components: bidirectional or “stop-and-go” motor
transport (which can be modeled in terms of advection-diffusion), and reversible interactions between
motor-cargo complexes and synaptic targets. Both of these features have recently been observed
experimentally. Our model suggests that, just as in human societies, there needs to be a balance between
“efficiency” and “equality”.
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A fundamental problem in cell biology is how newly
synthesized proteins are delivered to subcellular targets
located within the cell membrane. This is particularly acute
for neurons with their extensively branched dendrites that
receive information from other neurons, and a single long
axon that delivers information over long distances to other
neurons or muscle cells. Both the axon and dendrites
contain highly regulated, protein-rich subcellular compart-
ments that constitute synaptic contacts between neurons.
Some synaptic junctions appear partway along an axon—
en passant synapses—while others appear as terminals at
the ends of axonal branches. In order to generate new
synaptic contacts during synaptogenesis or to maintain and
modify existing synapses in response to synaptic activity
from other neurons, it is necessary to synthesize new
protein products and localize them at the appropriate
synaptic site [1]. The long distances between the soma
and distal synapses on the axon and dendrites necessitates
active motor-driven transport of vesicles along microtub-
ular filament tracks. Microtubules are directionally polar-
ized polymeric filaments with biophysically distinct (þ)
and (−) ends, and this polarity determines the preferred
direction in which an individual molecular motor moves.
For example, kinesin moves towards the (þ) end, whereas
dynein moves towards the (−) end [2]. Motor driven
transport along microtubules is responsible for the distri-
bution of many components necessary for the proper
function of a neuron [3], and the breakdown of such
transport has been implicated in many neurological dis-
eases such as Alzheimer’s and Parkinson’s disease [4].
One major issue regarding neuronal function is how

vesicles containing newly synthesized proteins are distrib-
uted evenly across the en passant synapses of an axon (or

the postsynaptic sites of a dendrite). Since vesicles are
injected from the soma (anterograde transport), one might
expect that synapses proximal to the soma would be
preferentially supplied with resources. This problem per-
sists even when the stochastic nature of motor transport and
delivery of cargo at synaptic targets is taken into account—
the probability of delivery would still be higher for
proximal synapses. In principle, the challenge of so-called
synaptic democracy could be solved by routing cargo to
specific synaptic targets, but there is no known form of
molecular address system that could support such a
mechanism, particularly in light of the dynamically chang-
ing distribution of synapses. Note that the notion of
synaptic democracy has previously arisen within the con-
text of equalizing synaptic efficacies, that is, ensuring that
synapses have the same potential for affecting the post-
synaptic response regardless of their locations along the
dendritic tree [5,6]. From a mathematical perspective, the
issue of synaptic democracy reflects a fundamental prop-
erty shared by the one-dimensional advection-diffusion
equation used to model active transport and the cable
equation used to model ionic current flow [7], namely, they
generate an exponentially decaying steady-state solution in
response to a localized source of active particles or current.
A number of recent experimental studies of axons in C.

elegans and Drosophila have shown that (i) motor-driven
vesicular cargo exhibits “stop and go” behavior, in which
periods of ballistic anterograde or retrograde transport are
interspersed by long pauses at presynaptic sites, and (ii) the
capture of vesicles by synapses during the pauses is
reversible in the sense that the aggregation of vesicles
can be inhibited by signaling molecules resulting in
dissociation from the target [8,9]. Thus, it has been
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hypothesized that the combination of inefficient capture at
presynaptic sites and the back-and-forth motion of motor-
cargo complexes between proximal and distal ends of the
axon facilitates a more uniform distribution of resources
[10]. In this Letter, we construct a biophysical model
of bidirectional vesicular transport in axons and establish
that the hypothesized mechanism can support a form of
synaptic democracy.
Let us begin by considering a simple three-state model of

a single motor-cargo complex moving on a semi-infinite
1D track and carrying a single synaptic vesicle precursor
(SVP), as shown in Fig. 1. The particle is taken to be in one
of three states labeled by n ¼ 0, �: unbound from the track
and stationary or slowly diffusing (n ¼ 0), bound to the
track and moving to the right (anterograde) with speed vþ
(n ¼ þ), or bound to the track and moving to the left
(retrograde) with speed −v− (n ¼ −). Transitions between
the three states are governed by a discrete Markov process.
Let pnðx; tÞ denote the probability that the particle is at
position x, x ∈ ð0;∞Þ, and in state n at time t given some
fixed initial condition. The evolution of the probability is
described by the following system of partial differential
equations [11,12]:

∂p�
∂t ¼ ∓v�

∂p�
∂x − βp� þ αp0; ð1aÞ

∂p0

∂t ¼ D0

∂2p0

∂x2 þ βpþ þ βp− − 2αp0 − kχAðxÞp0: ð1bÞ

For the moment, we take the end x ¼ 0 to be reflecting so
that vþpþð0; tÞ ¼ v−p−ð0; tÞ. (In our population model,
we will assume a constant, nonzero flux at x ¼ 0.) Here,
α; β are the transition rates between the stationary and
mobile states, and D0 is the diffusivity in the unbound state
n ¼ 0. We are also assuming that there is a uniform,
continuous distribution of presynaptic targets along a
region A of the axon, and that the motor complex can
irreversibly deliver its SVP to a presynaptic target at a
uniform rate κ. Thus, χAðxÞ denotes an index function with

χAðxÞ ¼ 1 if x ∈ A and χAðxÞ ¼ 0 if x∉A. For future
reference, we note that, in the above model, we are really
keeping track of the SVP bound to the motor complex so
that the irreversible delivery of the SVP to a presynaptic
target is treated as an absorption event.
For intracellular transport, one finds that the transition

rates are fast compared to v�=l, where l is a fundamental
microscopic length scale such as the size of a synaptic
target (l ∼ 1 μm). One can then use a quasi-steady-state
(QSS) diffusion approximation to obtain the following
advection-diffusion equation for the total probability den-
sity pðx; tÞ ¼ P

npnðx; tÞ [11,12]:

∂p
∂t ¼ −V

∂p
∂x þD

∂2p
∂x2 − kχAðxÞp; ð2Þ

with mean velocity V ¼ ðvþ − v−Þρþ, effective diffusivity
D given by

D ¼ D0ρ0 þ
α

βð2αþ βÞ ½ðvþ − VÞ2 þ ðv− þ VÞ2�;

and effective delivery rate k ¼ κρ0. Here ρ0 ¼ β=ð2αþ βÞ
and ρ� ¼ α=ð2αþ βÞ are the stationary probabilities of the
discrete Markov process for the states n ¼ 0 and n ¼ �,
respectively. The basic idea of the QSS reduction is to fix
units so that v� ¼ Oð1Þ and α; β ¼ Oð1=ϵÞ with
0 < ϵ ≪ 1. In this regime, there are typically a large
number of transitions between different motor-complex
states n while the position x hardly changes at all. This
suggests that the system rapidly converges to the (quasi)
steady state ρn, which is then perturbed as x slowly evolves.
This motivates decomposing the probability densities as
pnðx; tÞ ¼ pðx; tÞρn þ ϵwnðx; tÞ with

P
nwnðx; tÞ ¼ 0.

Substituting such a solution into Eqs. (1) and performing
an asymptotic expansion in wn then leads to Eq. (2) to
leading order in ϵ. In particular, D −D0ρ0 ¼ OðϵÞ.
Now, suppose that we have a population of motor

complexes injected at one end of the axon at a fixed rate
J1, each of which carries a single SVP. As a further
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FIG. 1 (color online). Three-state model of the bidirectional transport of a single motor-cargo complex. The particle switches between
an anterograde state ðn ¼ þÞ of speed vþ, a stationary or slowly diffusing state (n ¼ 0), and a retrograde state ðn ¼ −Þ of speed v−. The
motor complex can only deliver a SVP to a presynaptic target in the state n ¼ 0.
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simplification, let us take A ¼ ð0;∞Þ (uniform distribution
of synapses). Neglecting any interactions between motors,
the population version of Eq. (2) is given by the advection-
diffusion equation

∂u
∂t ¼ −V

∂u
∂x þD

∂2u
∂x2 − ku; x > 0; ð3Þ

where uðx; tÞ is the density of motor complexes carrying an
SVP at x at time t. (u satisfies the same equation as p,
Eq. (2), with χA ¼ 1 and

R∞
0 uðx; tÞdx the total number of

particles along the axon at time t.) We now assume that
there is a constant flux of particles injected at the end x ¼ 0,
so that Eq. (3) is supplemented by the boundary condition

−D
∂uð0; tÞ

∂x þ Vuð0; tÞ ¼ J1: ð4Þ

Let cðx; tÞ denote the density of vesicles delivered to the
presynaptic targets with

∂c
∂t ¼ kuðx; tÞ − γccðx; tÞ; ð5Þ

where γc is the rate of vesicle degradation within a
presynaptic target. (If we were to neglect degradation of
vesicles, then it would be necessary to impose, by hand, a
maximum capacity of presynaptic targets, otherwise, cðx; tÞ
could become unbounded.) A basic limitation of this model
follows from the observation that the steady-state distri-
bution of vesicles decays exponentially with respect to
distance from the soma with a correlation length ξ̄. That is,

cðxÞ ¼ k
γc

J1e−x=ξ̄

D=ξ̄þ V
; ξ̄ ¼ 2D

−V þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 4Dk

p : ð6Þ

Taking the typical values D ¼ 0.1 μms−1 for cytoplasmic
diffusion [12] and v ¼ 1 μms−1 for molecular motors [2],
and assuming that k < 1 s−1, we see that ξ̄ ≈ ð4=kÞ μm.
Thus, in order to have correlation lengths comparable to
axonal lengths of several millimeters, we would require
delivery rates of the order k ∼ 10−4 s−1, whereas measured
rates tend to be of the order of a few minutes [13,14]. This
is a conservative estimate, since molecular crowding is
likely to result in diffusivities several orders of magnitude
smaller than assumed above. Moreover, Eq. (5) implies that
reducing k results in a lower steady-state density of vesicles
in presynaptic targets. [Note that, if V ¼ 0, then Eq. (3) is
identical in form to the cable equation with uðx; tÞ
interpreted as the voltage along a passive dendrite [7]. If
a constant current is injected at a point X in the dendrite,
then the resulting steady-state voltage decays exponentially
towards the soma. Thus, more distal regions of a passive
dendrite have a much smaller effect on triggering an action
potential [5,6].]

We will show that a more uniform distribution of
presynaptic vesicles can be achieved by taking the delivery
of SVPs to be reversible, as has been observed experi-
mentally in a number of organisms [8,9]. This requires
generalizing the above advection-diffusion model in order
to keep track of motor complexes that are no longer
carrying an SVP. Therefore, let u0ðx; tÞ and u1ðx; tÞ denote
the density of motor complexes without and with an
attached SVP, respectively, and denote the forward and
backward rates for cargo delivery by kþ k−, respectively,
see Fig. 2. The transport of each motor population is
described by an advection-diffusion equation, but we now
include the transitions between the two populations due to
the reversible exchange of SVPs with presynaptic targets.
Thus,

∂u0
∂t ¼ D

∂2u0
∂x2 − V0

∂u0
∂x − γ0u0 − k−cu0 þ kþu1; ð7aÞ

∂u1
∂t ¼ D

∂2u1
∂x2 − V1

∂u1
∂x − γ1u1 þ k−cu0 − kþu1; ð7bÞ

for x > 0. We are allowing for the possibility that the mean
speed of a motor complex with or without cargo may differ.
We have also included the degradation terms γuuj, j ¼ 0; 1,
which account for the fact that motor complexes may
dysfunction and no longer exchange cargo with synaptic
targets. [One could also include such a term in the one
population model by taking k → kþ γu in Eq. (2).]
Equations (7) are supplemented by the following boundary
conditions at x ¼ 0:

J½u0ð0; tÞ� ¼ J0; J½u1ð0; tÞ� ¼ J1;

where JðuÞ ¼ −D∂xuþ vu. That is, motor complexes
without and with cargo are injected at the somatic end
x ¼ 0 at constant rates J0, and J1, respectively. It is
important to emphasize that the injected motor complexes
are not necessarily newly synthesized from the cell body.
For it has been found, experimentally, that motor com-
plexes recycle between the distal and somatic ends of the
soma [8,9]. In the case of a finite axon, we could model
recycling by imposing an absorbing boundary condition at

so
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k+k-

x
x = 0

J1

J0

FIG. 2 (color online). Schematic diagram of the reversible
exchange of vesicles between motor-cargo complexes and pre-
synaptic targets. Each motor is modeled according to an advection-
diffusion equation with average speed v and diffusivity D.
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the distal end and reinjecting the distal flux into the somatic
end. Since most of these complexes would be without an
SVP, this would mainly contribute to J0. Moreover, if the
axon is much longer than the range of vesicular delivery
necessary to supply en passant synapses, then the effects of
the absorbing boundary can be ignored, and we can treat
the axon as semi-infinite. Finally, in order to incorporate the
reversible exchange between motor complexes and presy-
naptic targets, it is necessary to modify Eq. (5) according to

∂c
∂t ¼ kþu1ðx; tÞ − k−cðx; tÞu0ðx; tÞ − γccðx; tÞ: ð8Þ

It is clear that, if k− ¼ 0 and γc > 0, then we recover the
previous single population model. Let us begin by consid-
ering the opposite limit for which k− > 0 and γc ¼ 0. (The
distribution c of presynaptic vesicles will remain bounded
provided that J0 > 0.) Equation (8) implies that, at steady
state,

cðxÞ ¼ kþu1ðxÞ
k−u0ðxÞ

; ð9Þ

Substituting Eq. (9) into the steady-state versions of
Eqs. (7) then gives

ujðxÞ¼
Jje−x=ξj

D=ξjþVj
; ξj¼

2D

−Vjþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
j þ4Dγu

q ; ð10Þ

for j ¼ 0; 1. Combining with Eq. (9) then yields the
following result for the steady-state density of synaptic
vesicles:

cðxÞ ¼ kþ
k−

J1
J0

D=ξ0 þ V0

D=ξ1 þ V1

e−Γx; ð11Þ

where Γ ¼ γ−11 − γ−10 . In particular, if the transport proper-
ties of the motor complex are independent of whether or not
it is bound to an SVP (V0 ¼ V1), then γ0 ¼ γ1, and we have
a uniform vesicle distribution cðxÞ ¼ c̄ ¼ ðkþ=k−ÞðJ1=J0Þ.
To further explore the ability of this model to produce

a democratic cargo distribution, we numerically solve
Eqs. (7) for a range of parameter values. We focus on
the biophysically relevant case in which γc is small (relative
to k�) but nonzero. Hence, we consider how the normalized
distribution cðxÞ=cð0Þ varies with ϕ≡ k−=γc, which deter-
mines the proportion of vesicles that are recycled into the
system after leaving the targets. Figure 3 displays the
normalized concentration profiles for a variety of k−=γc
values with either J0 ¼ J1 or J0 ¼ 0. (We take the domain
size to be much longer than 600 μm in order to avoid
boundary effects.) It can be seen that when J0 > 0, the
length scale over which nonexponential decay occurs is an
increasing function of k−=γc, while when J0 ¼ 0 the model

fails to distribute cargo across a substantial region of the
axon. Hence, an additional component of a delivery
mechanism that includes recapture is a source of motors
which are able to receive vesicles. We emphasize that this
does not require additional motors to be synthesized in the
soma, instead, motors may return to the beginning of the
axon after delivering their cargo. From the perspective of
synaptic democracy, it seems desirable to maximize k−;
however, increasing the recapture rate decreases the effi-
ciency of the delivery mechanism and can result in a overall
loss of vesicles due to motor degradation. The tradeoff that
occurs between efficiency and equality can be seen in
Fig. 4, where we have plotted the half-length (l1=2 ¼
maxfx∶cðxÞ ≥ 1=2g) as a function of k−=kþ along with
the total number of vesicles delivered at steady state. Our
simulations confirm that these results are qualitatively
insensitive to changes in all other parameter values.
To summarize, we have presented and analyzed a new

model of vesicle delivery in axons by molecular motor
transport. Our analysis suggests that a combination of stop-
and-go transport and reversible interactions between
motors and targets, both of which have been observed
experimentally, provides a biophysically plausible mecha-
nism for the democratic distribution of molecular cargo
among synapses. We have also established that an increase
in democracy comes at the expense of the quantity of cargo
delivered and the ratio k−=kþ serves as a measure of the
efficiency of the delivery mechanism. While little is known
about the specific mechanisms by which vesicles are
removed from the motors and transported to the synapses,
our results have identified some of the potential limitations
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FIG. 3 (color online). Numerical solutions for steady state
vesicle concentration as a function of axonal distance for
different values of ϕ ¼ k−=γc and J0 ¼ 1.5. For comparison,
the corresponding concentration profile when J0 ¼ 0 (which
is insensitive to ϕ) is shown by the thick line (red line).
We have also set γu ¼ 10−2 s−1, J1 ¼ 1.5, kþ ¼ 0.5 s−1,
k− ¼ 1.0 μms−1, v0 ¼ v1 ¼ 1 μms−1 and D ¼ 0.1 μms−2.
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of any such mechanism. We also expect similar issues to
apply to other intracellular transport processes, including
vesicular transport in dendrites. Our model is based on
experimental data regarding the nature of intracellular
transport and the fact that neurons can maintain functional
synapses at distal ends of axons and dendrites. One
experimental test of our model would be to measure the
parameter ϕ, since we assumed ϕ is sufficiently large, see
Fig. 3. Another way to test the predictions of our model
would be to pharmacologically manipulate the ratio k−=kþ
and to see how that affects the distribution of some green
fluorescent protein-labelled synaptic protein.
There are several possible extensions of our model. First,

each motor could be allowed to carry more than one SVP
(or cluster of SVPs). We would then need to consider a
multipopulation model with un; n ¼ 0; 1;…; N denoting
the concentration of motors carrying n SVPs and N the
maximum capacity of a motor. Second, we could consider
an inhomogeneous distribution of presynaptic targets. One
source of inhomogeneity reflects the fact that en passant
synapses are only distributed over a subinterval of an axon.
Following Maeder et al. [9], this could be incorporated by
considering a compartmental model of the axon, in which
an en passant compartment is sandwiched between a
proximal and a distal compartment, neither of which have

synaptic targets. As shown by Maeder et al. [9], the total
number of vesicles delivered to the en passant compart-
ment is sensitive to the distribution of motor velocities in
the surrounding compartments. Another source of inho-
mogeneity is the discrete nature of individual presynaptic
targets, the effects of which can be tackled using homog-
enization theory [15]. Finally, we could use a compart-
mental model to explicitly model the effects of motor
recycling in order to determine its contribution to the
currents J0; J1.
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