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We address the enhancement of electron transport in semiconductor superlattices that occurs in
combined electric and magnetic fields when cyclotron rotation becomes resonant with Bloch oscillations.
We show that the phenomenon is regular in origin, contrary to the widespread belief that it arises through
chaotic diffusion. The theory verified by simulations provides an accurate description of earlier numerical
results and suggests new ways of controlling resonant transport.
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Spatial periodicity plays a fundamental role in nature. In
particular, it governs quantum electron transport in crystals
[1]. In a perfect crystal lattice, an electron in a constant
electric field would undergo Bloch oscillations, moving
forwards and backwards periodically so that its average
drift would be zero [1]. But real lattices are imperfect, and
electrons may be scattered before reversing their motion,
allowing them to acquire a steady drift. Typically, the Bloch
oscillation period tB greatly exceeds the average scattering
time ts, because tB is proportional to the reciprocal of the
lattice period dl, which is very small. So, Bloch oscillations
are not observed in real crystals. Nanoscale superlattices [2]
(SLs) impose on the crystal an additional periodicity with
a period d greatly exceeding dl but still small enough
for the quantum nature of the electron to be important:
tB may become comparable to or smaller than ts so that
Bloch oscillations can manifest themselves, significantly
suppressing the current, generating gigahertz or terahertz
electric signals, and causing other important effects [3,4].
The first description of electron drift in SLs [2] showed

that the drift velocity vd vs the electric field F along a one-
dimensional SL possesses a peak at F ¼ FET such that tB
(being∝ F−1) is equal to ts. It has important consequences, in
particular, a peak in the differential conductivity vs voltage.
Another remarkable effect was predicted more recently

[5,6]. It was noticed that, if a magnetic field is added, the
dynamics reduces to that of an auxiliary classical harmonic
oscillator at the cyclotron frequency subject to a traveling
wave at the Bloch frequency. Numerical calculations within
this model and the relaxation-time approximation for
scattering [2] revealed additional peaks in vdðFÞ at the
values of F corresponding to integer ratios between the

Bloch and cyclotron frequencies. As is known from the
theory of dynamical systems, the phase plane of a harmonic
oscillator subject to a traveling wave is threaded by a
so-called stochastic web if the ratio between the wave and
oscillator frequencies is an integer [7,8]. This web plays an
important role in many physical systems [9,10]. It was
conjectured [5,6] that the dynamical origin of the peaks lies
in chaotic diffusion along the web. This conjecture stimu-
lated wide interest and numerous theoretical and exper-
imental investigations of the effect and its applications
(e.g., Refs. [11–21]). These and many other works (e.g.,
Refs. [22–27]) assumed the original conjecture to be
correct, implying that resonant electron transport in SLs
can be controlled by chaotic diffusion [18].
In the present Letter, we show that this commonly held

belief is incorrect: the peaks originate in a regular dynam-
ics, while chaos, when present, destroys them.
Consider a one-dimensional SL. Because of the

periodicity, it possesses minibands [2]. Let the SL param-
eters be such that only the lowest miniband is relevant
[5,6,11,13–21]. The electron energy can [5,6] be approxi-
mated as Eð~pÞ¼Δ½1− cosðpxd=ℏÞ�=2þðp2

yþp2
zÞ=ð2m�Þ,

where ~p≡ ðpx; py; pzÞ is its quasimomentum, the x axis is
directed along the SL, Δ is the miniband width, d is the SL
period, and m� is the electron effective mass for motion in
the transverse plane. Let us apply an electric field anti-
parallel to the SL axis and a magnetic field tilted at an angle

θ < 90°: ~F ¼ ð−F; 0; 0Þ and ~B ¼ (B cosðθÞ; 0; B sinðθÞ),
respectively. The semiclassical equations of motion
are [1–5,14,17–19,28]

d~p
dt

¼ −ef~F þ ½~v × ~B�g;

~v≡
�
dx
dt

;
dy
dt

;
dz
dt

�
¼

� ∂E
∂px

;
∂E
∂py

;
∂E
∂pz

�
; ð1Þ

where e is the absolute value of the electronic charge.
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The electron velocity in the x direction is

vxðtÞ≡ dx
dt

¼ ∂E
∂px

¼ Δd
2ℏ

sin

�
pxðtÞd

ℏ

�
: ð2Þ

Within the relaxation-time approximation [2], with a
correction allowing for the difference between the elastic
and inelastic scattering, the drift velocity is [3,6,37]

vd ¼ μν

Z
∞

0

dte−νtvxðtÞ; μ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
te

te þ ti

r
; ν≡ 1

μti
;

ð3Þ
where te and ti are the elastic and inelastic scattering times,
respectively.
If B ¼ 0, then pxðtÞ ¼ eFt. So, vxðtÞ ∝ sinðωBtÞ where

ωB ≡ edF=ℏ is the Bloch frequency, and Eq. (3) gives the
modified Esaki-Tsu (ET) result [2]:

vdðFÞ≡ vðmodÞ
ET ðωBÞ ¼ vðmodÞ

0 ~vET

�
ωB

ν

�
;

ωB ≡ ed
ℏ
F; vðmodÞ

0 ≡ μ
Δd
2ℏ

; ~vETðxÞ≡ x
1þ x2

:

ð4Þ
The function ~vETðωB=νÞ (4) has a maximum at ωB ¼ ν.
If B ≠ 0, the dynamics is much more complicated

because the components of ~p are interwoven.
Remarkably, however, the dynamics of pz reduces to a
relatively simple form, and px and py can be expressed in
terms of pz [5]. In terms of scaled quantities [19],

d2 ~p
d~t2

þ ~p ¼ ϵ sinðω~t − ~pþ ϕ0Þ;

~p≡ ~pzð~tÞ ¼ pzðtÞ
d tanðθÞ

ℏ
;

~t≡ ωct; ωc ≡ eB cosðθÞ
m� ; ω≡ ωB

ωc
;

ϵ ¼ Δm�

2

�
d tanðθÞ

ℏ

�
2

; ϕ0 ¼ pz0 þ px0;

pz0 ≡ ~pzð0Þ; px0 ≡ ~pxð0Þ; ~pxð~tÞ ¼ pxðtÞ
d
ℏ
:

ð5Þ
Two other scaled components of the momentum are related
to ~pzð~tÞ≡ ~pð~tÞ as follows: ~pxð~tÞ¼px0þω~t− ð ~pzð~tÞ−pz0Þ
and ~pyð~tÞ≡ pyðtÞd=ℏ ¼ d ~pzð~tÞ=d~t.
The physical origin of the dynamics (5), its relevance to

vxðtÞ, and the physical meanings of ωc and ϵ are as follows.
The transverse component of the magnetic field and
electron motion along the SL generate a Lorentz force
oscillating at frequency ωB. It excites a cyclotron rotation
in the transverse plane which modulates px and, via px,
the angle of the Bloch oscillation. The frequency of the
cyclotron rotation, which we will call the cyclotron

frequency, is ωc. The amplitude of the Lorentz force in
dimensionless units is ϵ. For details, see Ref. [28].
We consider the case of zero temperature, which is the

most important one [5,6,13–21]. Only zero initial momenta
are then relevant [5,17,19,28]. So, the scaled drift velocity
reads as

~vd ≡ vd

vðmodÞ
0

¼ ~ν

Z
∞

0

d~te−~ν ~t sinðω~t − ~pÞ; ~ν≡ ν

ωc
;

ð6Þ
where ~p≡ ~pð~tÞ is a solution of Eq. (5) with

~pð0Þ ¼ 0;
d ~pð~t ¼ 0Þ

d~t
¼ 0; ϕ0 ¼ 0; ð7Þ

and ~ν is the scattering rate in terms of the dimensionless
“time” ~t (5).
We will show that the resonance peak in ~vdðωÞ at ω ≈ 1

may be of magnitude ∼1 for arbitrarily small ϵ. In contrast,
the resonance contributions near multiple and rational
frequencies necessarily vanish in the asymptotic limit
ϵ → 0. These small contributions are ignored in our theory.
Necessary (but not sufficient) conditions for the distinct

resonance peak are

~ν ≪ 1; ϵ=4 ≪ 1: ð8Þ
If any of these conditions fail, the resonant component of
vxðtÞ cannot accumulate for long. Besides, if the second
condition fails, the peaks at multiple or rational frequencies
are significant and/or the dynamics at the relevant time
scales is chaotic. We assume further that the conditions (8)
hold true unless otherwise specified.
As is clear from Eqs. (5)–(7), the function ~vdðωÞ depends

on two parameters: ~ν and ϵ. But we show below that the
magnitude and scaled shape of the resonance component
depend only on a single parameter

α≡ ϵ

4~ν
: ð9Þ

It is proportional to the ratio of the two time scales—the
scattering time and the time of the strong modulation of the
Bloch oscillation angle—which in terms of dimensionless
time (5) are ~ts ¼ ~ν−1 and ~tSM ¼ ϵ−1, respectively. To
illustrate the latter time scale, consider the exact resonance
ωB ¼ ωc. The modulation amplitude Aam then grows
linearly with time, as Aam ¼ ϵ~t=2, until Aam ∼ 1. The latter
range is reached just by ~t ∼ ~tSM, and so strong modulation
essentially changes the dynamics (5). However, if α ≪ 1,
then the scattering occurs before the modulation becomes
strong, so that the latter is irrelevant. Otherwise, the strong
modulation comes into play, and the drift enhancement
occurs differently.
We consider first the limit α ≪ 1. In this case, the

magnitude of ~p at the scattering time scale ~ts ≡ ~ν−1 is
∼α ≪ 1, so that we can neglect ~p in sinðω~t − ~pÞ on the rhs
of the equation of motion (5), which then reduces to the
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equation of the constrained vibration. Solving it with zero
initial conditions (7) and substituting the result into the
integrand of the integral (6), approximating sinðω~t − ~pÞ by
sinðω~tÞ − cosðω~tÞ ~p, integrating, and neglecting asymptoti-
cally small terms, we obtain

~vd ¼ ~vETðω=~νÞ þ ~vðresÞd;a ;

~vðresÞd;a ¼ α
2ω=ð1þ ωÞ

1þ ððω − 1Þ=~νÞ2 ; α ≪ 1: ð10Þ

This is a superposition of the ET peak (4) and the resonance

peak ~vðresÞd;a ðωÞ. The latter has an asymptotically Lorentzian
shape with a half-width ~ν and maximum α acquired at
ω ¼ 1. The physical origin of the peak is as follows. If
ωB ¼ ωc, the modulation amplitude of the Bloch oscil-
lation angle grows with time, while the modulation-induced
deviation of vxðtÞ possesses a component that retains its
sign and also grows with time, thus, being accumulated.
If ωB − ωc ≠ 0, the modulation amplitude grows more
slowly, and, moreover, if jωB − ωcj ≫ ν, the sign of the
deviation changes many times during ts so that the drift
averages to zero.
We now compare Eq. (10) with numerical simulations

for the SL used in most experiments [6,11,13] and a typical
magnetic field. So, let d ¼ 8.3 nm, Δ ¼ 19.1 meV,
ν ¼ 4 × 1012 s−1, m� ¼ 0.067me (where me is the free
electron mass), and B ¼ 15 T [13,19,20]. Then,

~ν≈
0.102
cosðθÞ ; ϵ≈

0.578
cot2ðθÞ; α≈1.42

sin2ðθÞ
cosðθÞ : ð11Þ

Figure 1 presents the results for θ ¼ 12° and 20°, where
α ¼ 0.063 and 0.177, respectively. For θ ¼ 12°, the theory
and simulations are virtually indistinguishable. For
θ ¼ 20°, the theory only slightly exceeds the simulations.
As θ increases further, the excess of the theoretical

resonant peak (10) over that in the simulations grows:
~vdðω ¼ 1Þ in the simulations for θ ¼ 40° [19,20] is about
half that given by Eq. (10). The invalidity of Eq. (10) here is
unsurprising because α ≈ 0.77 is not small.
To encompass arbitrary α, we develop an approach

suggested earlier [7,8] in a different context. If ω≃ 1

in Eq. (5), then, neglecting small fast oscillations, the dyna-
mics reduces to that of the “resonant” Hamiltonian [7–10]:

HrðI; ~φÞ ¼ −ðω − 1ÞI þ ϵJ1ðρÞ cosð ~φÞ;

I ¼ ~p2 þ _~p2

2
; ρ ¼

ffiffiffiffiffi
2I

p
;

~φ ¼ φ − ω~tþ π; φ ¼ arctan

�
~p
_~p

�
;

~p ¼ ρ sinðφÞ; _~p ¼ ρ cosðφÞ; ð12Þ
where J1ðxÞ is a Bessel function of the first order [29].
If jω − 1j is sufficiently small, the Hamiltonian

(12) possesses saddles generating separatrices [Figs. 2(a)
and 2(b)]. When ω ¼ 1, the separatrices merge into a single
infinite grid [Fig. 2(a)]. For the original system (5), the
neglected fast-oscillating terms dress this grid with a
chaotic layer, thus, forming a stochastic web (SW).
Formally, chaotic diffusion along the vertical filaments
of the SW might transport the system to arbitrarily high
values of I, so that j~pj might become arbitrarily large. In all
former works, e.g., Refs. [5,6,11–27], it was this chaotic
diffusion that was believed to be the origin of the resonant
drift. This cannot be the case, however, because (i) at
ϵ=4 ≪ 1, the time scale at which chaos manifests [7–10] is
much larger than that for the formation of the resonant peak
(being ∼ω−1

c minf~ts; ~tSMg), and (ii) at ϵ=4≳ 1, when chaos
is pronounced, ~p varies chaotically at relevant time scales
indeed, but this leads to a chaotic variation of the value and
sign of vx (2) in the integrand of the integral in Eq. (3),
which decreases the integral rather than increasing it;
therefore, chaos suppresses the drift.
We uncover the true origin of the resonant peak in the

general case by an analysis of the regular dynamics along
the trajectory of the resonant Hamiltonian (12) starting
from (I ¼ þ0, ~φ ¼ π=2) [28]. In the equations of motion
for the system (12), we transform from I to ρ and scale the
time and frequency shift by the slow “time” ~tSM and its
reciprocal, respectively,

dρ
dτ

¼ J1ðρÞ
ρ

sinð ~φÞ; d ~φ
dτ

¼ −δþ
dJ1ðρÞ
dρ

ρ
cosð ~φÞ;

τ≡ ~t
~tSM

≡ ϵ~t; δ≡ ω − 1

~t−1SM
≡ ω − 1

ϵ
: ð13Þ

For jω − 1j ≪ 1, the slow dymamics of ~p is fully described
by solution of Eq. (13)with appropriate initial conditions [28]

ρðτ ¼ 0Þ ¼ þ0; ~φðτ ¼ 0Þ ¼ π=2: ð14Þ
The drift velocity is [28]

~vd ¼ ~vETðω=~νÞ þ ~vðresÞd ðδ; αÞ;

~vðresÞd ¼
R τp
0 dτ exp ð− τ

4αÞJ1½ρðτÞ� sin½ ~φðτÞ�
4α½1 − exp ð− τp

4αÞ�
; ð15Þ
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FIG. 1 (color online). Scaled drift velocity vs the ratio
between the Bloch and cyclotron frequencies: comparison of
numerical calculations (5)–(7) (black thin solid line) and the
asymptotic theory (10) (red thick dash-dotted line) for
(a) θ ¼ 12°, (b) θ ¼ 20°.
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where τp is the period of the trajectory (13) and (14). Figure 3
demonstrates the effectiveness of Eq. (15). Figure 3(a) relates
to the aforementioned case (11) with θ ¼ 40°: the agreement
between the theory and simulations in the range of the
resonant peak is excellent. Figure 3(b) shows the evolution
of ~vdðωÞ in the vicinity ofω ¼ 1 as α grows while ~ν ¼ 0.02.
In addition to perfect agreement for ϵ≡ 4α~ν≲ 0.4 and
reasonable agreement for higher ϵ up to 0.8, it illustrates
the key features discussed below.
A striking feature of Fig. 3(b) is the nonmonotonic

dependence of the peak maximum on α. It is a consequence
of an interplay between the time scales ~ts ≡ ~ν−1 and
~tSM ≡ ϵ−1. To further clarify the role of the latter, consider
the exact resonance: δ ¼ 0. The initial ~φ ¼ π=2 is then
preserved along the trajectory (13) and (14), so that ρ obeys
the closed dynamical equation dρ=dτ ¼ J1ðρÞ=ρ. At
τ≡ ~t=~tSM ≪ 1, the rhs is equal to 1=2 [29], so that ρ
reaches values ∼1 for τ ∼ 1. The growth of ρ then slows

down, and, for τ ∼ 1, ρ reaches the vicinity of xð1Þ1 ≈ 4

corresponding to the first saddle of the SW [Fig. 2(a)],
where the growth saturates. Moreover, the stay in the
vicinity of the saddle results in that resonant drift ceases. If
~ts ≪ ~tSM, the saturation of the ρ growth is irrelevant. So,
increase of ϵ results in faster acceleration of the transverse
momenta during the whole period before scattering, and, by
the time of the scattering, their magnitude has reached
higher values; the same applies to the modulation ampli-

tude and, thus, ~vðresÞd too. In the opposite limit ~tSM ≪ ~ts, the
drift stops at ~t ∼ ~tSM—long before the scattering. In this

regime, the probability PRD for electron to undergo the

resonant drift is∼~tSM=~ts. Since ~v
ðresÞ
d is proportional to PRD,

it decreases together with ~tSM ≡ ϵ−1. The optimal regime is
~ts ∼ ~tSM, i.e., α ∼ 1.
Figure 4(a) shows the universal function AðαÞ represent-

ing the resonant peak maximum ~vðresÞd ðδ ¼ 0; αÞ [the
analytic formula is given in Eq. (S.6) of [28]]. It attains
the maximum Amax ≈ 0.38 at α ¼ αmax ≈ 1.16 while its

small-α and large-α asymptotes are α and ðxð1Þ1 Þ2=ð8αÞ≈
1.84=α, respectively. Figure 4(b) compares ~vdðω ¼ 1Þ and
~vETð1=~νÞ þ A½ϵ=ð4~νÞ� as functions of ϵ for a given
~ν ¼ 0.02. The agreement is excellent up to ϵ ≈ 0.3 and
good up to ϵ ≈ 0.7.
Figure 3(b) demonstrates also that, as α increases, the

width of the peak grows monotonically while its shape
evolves from being domelike to being spikelike. Analytic
results are presented in Ref. [28].
Finally, Fig. 3(b) demonstrates that chaos comes into

play only at ϵ ∼ 1, leading to fluctuations in ~vdðωÞ (see the
curve for α ¼ 10). As ϵ increases further, fluctuations
intensify while the peak disappears [see the curve for
α ¼ 15 and the range ϵ≳ 1.2 in Fig. 4(b)]. See Ref. [28] for

FIG. 3 (color online). Scaled drift velocity vs the ratio between
the Bloch and cyclotron frequencies: the general theory (15) and
the numerical simulations for (a) the case Eq. (11) with θ ¼ 40°,
(b) ~ν ¼ 0.02 as α≡ ϵ=ð4~νÞ increases.

FIG. 2 (color online). Phase plane of the resonant Hamiltonian (12) for three characteristic values of δ≡ ðω − 1Þ=ϵ: (a) δ ¼ 0, (b)

0 < δ < δð2Þcr , (c) δ > δð1Þcr , where δðnÞcr ¼ fð1=xÞj½dJ1ðxÞ=dx�jgjx¼xðnÞ
1

. The xðnÞ1 are nth zeros of the Bessel function J1ðxÞ. Red circles

mark the points (þ0, π=2); the red dashed lines show outgoing trajectories [in (b),(c), the same applies to equivalent trajectories from
(þ0, 5π=2)]. Dots mark saddles; separatrices are shown by solid lines. Arrows indicate directions of motion.

FIG. 4 (color online). (a) Universal asymptotic dependence
(S.6) of the amplitude of the resonant peak on α≡ ϵ=ð4~νÞ (solid
line) and its asymptotes for small and large α (dashed lines). The
inset shows the enlarged scale for α < 2.5. (b) Comparison
between (i) numerically calculated ~vdðω ¼ 1Þ for ~ν ¼ 0.02 as
a function of ϵ (blue thin solid lines) and (ii) the theory—the
general theory (red dash-dotted line) i.e. Eq. (15) for ω ¼ 1 while

vðresÞd ðω ¼ 1Þ reduces to the expression given in Eq. (S.6) of [28],
and the small-α or large-α asymptotes (dashed lines) i.e. (15) for

ω ¼ 1 while vðresÞd ðω ¼ 1Þ is approximated as α or ðxð1Þ1 Þ2=ð8αÞ
respectively.
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details. Thus, chaos may be relevant only at ϵ≳ 1, playing
a destructive role for the resonant drift, contrary to the
established belief [5,6,11–27] about its constructive role.
The latter belief suggested that the best performance of the
resonant drift occurs when chaos is strong. However,
neither simulations nor experiments [6,17,18,21] confirm
this: as θ → 90°, when chaos intensifies to its maximum
extent, the drift vanishes. Our work shows that the ways
needed to control the resonant drift are different. If the
model (1) is valid and ~ν ≪ 1 and ϵ=4 ≪ 1, it is controlled
by a single parameter α. The best performance corresponds
to α ¼ αmax ≈ 1.16. The drift is negligible if any of the
following conditions hold: α≲ 0.1, α ≳ 20, ~ν≳ 1. As ϵ
grows above 1, the resonant drift at ω ≈ 1 gradually decays
(at multiples, it first rises and then decays too). See
Ref. [28] for illustrations.
In conclusion, we have shown that the enhancement of

the electron drift occurring if the Bloch and cyclotron
frequencies are close, originates in a regular dynamics,
contrary to the widespread belief that its origin is in chaotic
diffusion. The enhancement is explained as follows. The
electron motion along the SL and the tilted magnetic field
produce a Lorentz force oscillating at the Bloch frequency.
It excites cyclotron rotation which modulates the angle of
the Bloch oscillation of the instantaneous velocity. Beyond
resonance, the velocity change caused by the modulation
oscillates during the relevant time scale, and so the drift
averages to zero. In contrast, the change in the resonant
case keeps its sign, thus, being accumulated.
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