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The determination of spectral properties from first principles can provide powerful connections between
microscopic theoretical predictions and experimental data, but requires complex electronic-structure
formulations that fall outside the domain of applicability of common approaches, such as density-
functional theory. We show here that Koopmans-compliant functionals, constructed to enforce
piecewise linearity and the correct discontinuity derivative in energy functionals with respect to fractional
occupation—i.e., with respect to charged excitations—provide molecular photoemission spectra and
momentum maps of Dyson orbitals that are in excellent agreement with experimental ultraviolet
photoemission spectroscopy and orbital tomography data. These results highlight the role of Koopmans-
compliant functionals as accurate and inexpensive quasiparticle approximations to the spectral potential.
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The interpretation of experimental spectra, such as those
obtained with ultraviolet photoemission spectroscopy
(UPS) or angular-resolved photoemission spectroscopy
(ARPES), often requires theoretical support, due to the
complexity of the data involved [1,2]. Theoretical predic-
tions can help resolve spectral contributions coming from
quasidegenerate excitations, allowing us to label each state
with its native quantum numbers, or to find the correspon-
dence between photoemission peaks and the probability
density of the states fromwhich electrons were emitted [3,4].
The power and accuracy of current experimental techniques,
together with their microscopic resolution, strongly moti-
vate the development of reliable first-principles methods
able to reproduce accurately experimental spectra for
different setups and photon energies, and to interpret them
qualitatively and quantitatively. From a theoretical point of
view, photoemission spectra have been studied with many-
body perturbation theory [5,6], time-dependent extensions
of density-functional theory (DFT) [7], density-matrix
functional theory [8], or with the wave function methods
of quantum chemistry [9,10]. However, due to the signifi-
cant computational requirements of these approaches, and
their own limits in terms of ultimate accuracy, applications
are limited in system size and complexity. This is the reason
why simpler methods such as Hartree-Fock or ground-state
DFT are still frequently employed to interpret photoemis-
sion spectra [4,11].
Recently, Dabo and collaborators have introduced

Koopmans-compliant (KC) functionals [12–16] to enforce

a generalized criterion of piecewise linearity with respect to
the fractional removal or addition of an electron from any
orbital [and not only the highest occupation molecular
orbital (HOMO)] in approximate DFT functionals, and to
extend to the entire electronic manifold the self-interaction
linearization imposed by DFTþ Hubbard U [17,18]. The
condition of Koopmans’ compliance is naturally akin to
that of enforcing a correct description of charged excita-
tions, and thus can lead to orbital energies that are com-
parable to the quasiparticle excitations of photoemission
experiments.
In this Letter, we illustrate the remarkable performance

of the KC class of functionals in predicting ultraviolet
photoemission spectra and orbital tomography momentum
maps; such agreement with experiment is complemented
by potential energy surfaces that preserve the quality of the
base functionals [16], and by an accuracy for frontier
orbital energies [ionization potentials (IPs) and electron
affinities (EAs)] that is comparable and slightly superior to
the state of the art in many-body perturbation theory, all at
very moderate computational costs [16]. Crucially, these
results support the view of Ref. [19] that KC functionals
directly approximate the spectral potential, i.e., the local,
frequency-dependent contraction of the electronic self-
energy that is necessary and sufficient to describe the local
spectral function [19,20] of a given system.
Photoemission spectra can be reproduced theoretically

following the well-established three-step model, within the
sudden approximation [2]. This approach treats the
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photoexcitation as a transition from an electronic initial
state jΦN

0 i—which is the ground state with energy EN
0 —

into an excited N-particle state jΦN
i;ki ¼ jΦN−1

i i ⊗ jξki of
energy EN

i;k, composed of the ith excited state of the singly
ionized system (with energy EN−1

i ) and the wave function
ξk of the ejected electron, approximated by a plane wave of
wave vector k. The total photoemission intensity can be
described, to first order in perturbation theory, through
Fermi’s golden rule [2] as

IðνÞ ∝
X

i;k

jhΦN
0 jA · pjΦN

i;kij2δðhνþ EN
0 − EN

i;kÞ; ð1Þ

which contains the squared modulus of the light-matter
interaction operator in the dipole approximation—where A
is the semiclassical electromagnetic field and p is the
momentum operator of the electron. Equation (1) can be
written in terms of single-particle Dyson orbitals ϕd

i ðrÞ ¼
hΦN−1

i jΨ̂ðrÞjΦN
0 i and binding energies Eb

i ¼ EN−1
i − EN

0 ,
as [21]

IðνÞ ∝
X

i;k

jhϕd
i jA · pjξkij2δ

�
hν − Eb

i −
ℏ2k2

2m

�
: ð2Þ

More details on the calculation of IðνÞ can be found in the
Supplemental Material [22]. The excitation energy is now
expressed in terms of the kinetic energy ℏ2k2=2m of the
ejected electron and its binding energy Eb

i defined as the
negative of the Dyson orbital energy εdi . The Dyson
orbitals, whose energies are the poles of the one-body
Green’s function, fulfill the quasiparticle equation

½T̂ þ v̂þ Σ̂ðεdi Þ�jϕd
i i ¼ εdi jϕd

i i; ð3Þ

where v̂ is the sum of the external and Hartree potentials
and Σ̂ is the electron-electron self-energy, and can, in
principle, be determined within the framework of many-
body perturbation methods [5].
It has been argued [11,53] that exact KS eigenstates and

eigenvalues can approximate Dyson orbitals and quasipar-
ticle excitations, particularly when close to the HOMO.
Nevertheless, approximate rather than exact density func-
tionals display electronic eigenvalues that are only in poor
correspondence with particle-removal energies; even the
HOMO, that would be correctly reproduced by exact DFT,
is typically underestimated due to self-interaction errors
[15,54,55]. Self-interaction is also responsible for the
spatial over-delocalization of charge density and wave
functions [18,55], and a number of methods have been
proposed to counteract it; these include the Perdew-Zunger
correction (PZ) [54], DFTþ Hubbard U [17,18], and
range-separated hybrids [56,57]. Last, it is important to
note that a local static potential does not provide the correct
framework to define Dyson orbitals [5], which are solutions

of the quasiparticle equation [Eq. (3)] in the presence of a
nonlocal and frequency-dependent self-energy.
KC functionals, on the other hand, provide a formalism to

approximate directly the spectral potential [19] and the
quasiparticle excitations. These functionals are obtained
by removing, orbital-by-orbital, the nonlinear (Slater) con-
tribution to the energy as a function of fractional occupation
and replacing in its lieu a linear (Koopmans) term, providing
in a functional form some of the concepts present in Slater’s
ΔSCF approach. The linear term can be chosen either
following Slater’s suggestion [58], proportional to the orbital
energy at half occupation (in which case the KC functional is
labeled simply as K [13]), or as the difference between the
energies of the two adjacent electronic configurations with
integer occupation; this latter is labeled KI (“I” standing for
“integral”). The numerical differences between these two
functionals are negligible, and so we focus here on KI, that is
more straightforward to implement, and on its combination
with the Perdew-Zunger correction, that we label KIPZ. All
these functionals, described in detail in Refs. [13,16,59], are
obtained from an approximate functional Eapp as
Eapp þ α

P
iΠi, where for KI

ΠKIðρiÞ ¼ −
Z

fi

0

hφijHappðsÞjφiids

þfi

Z
1

0

hφijHappðsÞjφiids; ð4Þ

and for KIPZ

ΠKIPZðρiÞ ¼ ΠKIðρiÞ − fiEHxc½jφij2�; ð5Þ

respectively. In the above equations, ρi ¼ fijφij2, and
HappðsÞ is the approximate KS Hamiltonian calculated with
orbital φi occupied by a fractional amount s. The multipli-
cative factor α ∈ ½0; 1� in the definition of EKC acts as a
simplified electronic screening, and it is chosen so that the IP
of a neutral molecule is equal to EA of the molecular cation
(i.e., enforcing Koopmans’ condition, see Refs. [13,56]). As
shown by Dabo et al. [13,14] and Borghi et al. [16], this
constant screening is sufficient to accurately predict IP and
EA energies from the eigenvalue spectrum of a variety of
molecular systems, although a more sophisticated orbital-
dependent choice might be convenient in the case of more
complex or extended systems (given that the electron
affinities are a most challenging case, we will discuss here
the effects of calculating the screening not only on neutral
molecules, but also on the molecular anions, labeling these
results as EA�).
The Koopmans orbital-by-orbital linearity condition

imposed through Eqs. (4) or (5) leads to an orbital-
density-dependent (ODD) formulation in which the energy
functional depends on the density of the individual
orbitals. As such, it is not invariant under unitary rotations
[19,59–61] and the variational orbitals jφii that minimize
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the ODD functional are different from the eigenstates or
canonical orbitals jϕmi that diagonalize it, as discussed, e.g.,
in Refs. [59–61]. The generalized eigenvalue equation is

Ĥappjϕmi þ ~Σmjϕmi ¼ εmjϕmi; ð6Þ
with

~ΣmðrÞϕmðrÞ ¼
X

i

v̂iðrÞφiðrÞU†
im; ð7Þ

where the unitary matrix U transforms the variational
orbitals jφii into the canonical ones jϕmi ¼

P
ijφiiU†

im
and where v̂iðrÞ ¼ ½δΠKCðρiÞ=δρiðrÞ�. The similarity of
Eq. (6) with the quasiparticle Eq. (3) is evident; we also
note that the operator v̂i acts on the variational state jφii as a
simplified self-energy that is local or even constant in space
(this is the case for the KIPZ and KI functionals, respec-
tively). As discussed in Ref. [19], ODD canonical orbitals
have a natural interpretation as Dyson orbitals, and their
energies as particles’ removal energies; this interpretation
will be clearly supported by the results of the present work.
In the limit of a crystalline system, the canonical orbitals
satisfy Bloch’s theorem, whereas the variational orbitals
remain localized (and are actually very similar to maximally
localizedWannier functions [62]), so that v̂i depends only on
local properties, even in periodic crystals, and converges
rapidly to its nontrivial thermodynamical limit—allowing
seamless application to atoms, molecules, and solids
[currently, the only requirement for Eq. (6) to be well
defined is that the system under consideration has a finite
gap, which ensures that the filling of variational orbitals is
either zero or one, and the definition of orbital densities ρi
unambiguous]. We also note in passing that, using this
terminology, the ensemble-DFT correction of Ref. [63] is
equivalent to the KI functional, but applied to the canonical
orbitals rather than the variational ones.
First, we highlight in Fig. 1 and Table I the accuracy of

the KC functionals in predicting the energy of frontier
orbitals, by comparing IPs and EAs for a set of 23
photovoltaic molecules; KI and KIPZ show a performance
which is comparable to the state of the art of many-body
perturbation methods. For reference, we also provide Slater
ΔSCF results, that are known to be good estimates for the
frontier energies of molecular systems; we also note that
ΔSCF corrections will go to zero in extended systems [64],
while KI and KIPZ rapidly converge to their thermody-
namic limit. We next show in Fig. 2 a comparison of the
photoemission spectra for three gas-phase molecules
(pentacene, porphine and fullerene C60), confirming how
these KC functionals can successfully predict the binding
energies of deeper states and the correct photoemission
amplitudes. Indeed, the three panels of Fig. 2 display a
remarkable agreement between the predicted KI and KIPZ
spectra and the experimental data (extensive results for all
23 molecules of Fig. 1 and at different photon energies are

shown in the Supplemental Material [22]). The improve-
ment is evident not only in the peak positions, but also in
the shapes and intensities.
We believe there are two main explanations for the

accuracy of these functionals: (i) KI corrects the KS
eigenvalues of approximate DFT by aligning them to
particle removal energies through Koopmans’ condition,
while (ii) KIPZ adds to this feature the exactness in the one-
electron limit, in which it recovers the Rydberg series of the
hydrogen atom. This latter property (i.e., recovering the 1=r
behavior of the exact KS potential) is essential in the
development of novel functionals and plays an important
role in the prediction of fundamental gaps and excitation
energies [57]. At variance with the KI functional, the KIPZ
functional is able to modify not only the electronic
excitation energies of approximate DFT, but also the
manifold of electronic orbitals (i.e., the single-particle
density-matrix) [16]. A change in the density matrix has
repercussions on the values of both the photoemission peak
intensity and the position of every electronic excitation,
which allows the KIPZ functional to yield a more accurate
description of experimental data. Notably, KC functionals

FIG. 1 (color online). IPs and EAs for 23 organic photovoltaic
molecules, obtained from the energies of the frontier orbitals and
calculated using either PBE or the self-interaction corrected
functionals PZ, KI, and KIPZ (all using PBE as base), and
compared with available experimental data.

TABLE I. Mean absolute errors with respect to experiments for
the IPs (16 molecules, in eV) and EAs (10 molecules, in eV) for
the molecules of Fig. 1, for which experimental and self-
consistent GW data are available (see Table I and II of the
Supplemental Material [22], and Refs. [23,24]). We also show
results obtained with a screening factor appropriate to the
molecular anion, rather than the neutral molecule (these are
labeled EA�).

PBE PZ KI KIPZ ΔSCF scf-GW

IP 2.26 1.27 0.45 0.25 0.35 0.31
EA 1.62 1.82 0.50 0.22 0.22 0.29
EA� 0.22 0.17
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are successful also in capturing the change in photoemis-
sion peak positions and intensities when changing the
energy of the incoming photon. Figure 3 displays, for
instance, the results for fullerene C70, compared
with experiments, for incident photon energies of 21.22
(Ref. [27]) and 50 eV (Ref. [30]), showing again a very
good agreement between theoretical and experimental
spectra for peak positions and relative intensities. Also,
it is known that the first three peaks of the spectrum of
C70 are subject to pronounced variations as a function of
the energy of the incident photon hν, with the relative
intensities of the first two peaks showing characteristic
oscillations (see Ref. [30] and references therein) that are
described very accurately by our formulation in the entire
0–200 eV range (see inset of Fig. 3).
In the last part of this Letter, we discuss the ability of

KC functionals to predict data obtained from orbital

tomography [65]. This technique consists in exploiting
angle-resolved photoemission spectroscopy to extract
momentum maps of molecular orbitals [4,66]. Because
of the complexity of spectroscopic data, the deconvolution
of orbital maps from photoemission results requires the
support of theoretical UPS simulations [4]. Unfortunately,
the accuracy of approximate DFT is particularly compro-
mised in systems whose ground-state wave function is
composed of KS eigenstates with very different spatial
character, e.g., localized versus delocalized. This difference
in localization is such that different eigenstates carry
unequal self-interaction biases, so that even the orbital order-
ing disagrees with experiments. An example of this can be
found in NTCDA (1,4,5,8-naphthalene-tetracarboxylic
dianhydride) in which localized orbitals on the anhydride
side groups and delocalized ones on the naphthalene
core coexist at close orbital energies [67]. In NTCDA,

FIG. 2 (color online). UPS spectra for (a) pentacene, (b) porphine, and (c) fullerene C60 calculated using the PBE, PZ, KI, and KIPZ
functionals, and plotted as a function of electron binding energy hν − ℏ2k2=ð2mÞ. For pentacene and porphine the calculations are
done for an incoming photon energy of 21.22 eV (corresponding to the experimental HeI radiation), and are comparedwith experimental
gas-phaseUPSmeasurements usingHeI (Ref. [25] andRef. [26]), while for fullereneC60 calculations and experimental data (Ref. [27]) are
for a 50 eV photon energy. The blue arrows mark the experimental electron affinities (corresponding to the binding energy of the lowest
unoccupied molecular orbital) of pentacene and C60, taken from Refs. [28] and [29].

FIG. 3 (color online). Theoretical predictions for the photo-
emission spectrum of fullerene C70, performed at incoming photon
energies of (a) 21.22 and (b) 50 eV. These are compared with
experimental gas-phase photoemission data at the same photon
energies, taken from Refs. [27] and [30], respectively. The inset
in (a) shows the photoemission intensity ratio of the A and B
peaks computed at different photon energies, using the KIPZ
functional (red line); the experimental data (blue dots) are taken
from Ref. [30].

FIG. 4 (color online). Square of the Fourier transforms of
different molecular orbitals in NTCDA, as computed with
different methods: (a, top) HOMO, PBE, (b, top) HOMO, KIPZ,
and (c, top) HOMO-1, KIPZ. White dashed circles in the (kx; ky)-
momentum maps represent experimental intensity isolines taken
from Ref. [66]. The bottom of each panel shows the charge
density isosurfaces corresponding to their respective orbitals,
color coded according to the sign of the wavefunctions.
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energy differences are smaller than the self-interaction
errors on two of the lowest-lying localized orbitals, so that
in PBE these are pushed higher in energy—up to the
HOMO and the HOMO-1. These assignments contradict
experimental results [see Fig. 4(a)] and accurate studies
combining ARPES data and a generalized optimized
effective potential approach, with which Dauth et al.
[66] demonstrate that HOMO and HOMO-1 should
correspond to two delocalized orbitals with an energy
difference of about ΔE ¼ 0.44 eV (measured from the
experimental kinetic energy difference of photoelectrons
ejected from either state). We find that the KIPZ functional
not only predicts the correct ordering and maps of the
orbitals [see Figs. 4(b) and 4(c)], but also a correct energy
difference of ΔE ¼ 0.41 eV.
In conclusion, we have shown in this Letter the accuracy

of Koopmans-compliant functionals [12–16] in describing
spectral properties from first principles; these properties
include ionization potentials, electron affinities, ultraviolet
photoemission spectra, and orbital tomography momentum
maps, all in close agreement with experimental measure-
ments. While the results presented here have focused on
molecules, the rapid convergence of the localized varia-
tional orbitals to their bulk thermodynamic limit allows a
direct extension of these concepts to the case of extended
systems. As argued in Ref. [19], these functionals introduce
a beyond-DFTapproach where the spectral potential, rather
than the exchange-correlation one, is directly approxi-
mated, and provide both a conceptual and a practical
framework to predict spectral properties from functional
theories, rather than perturbative approaches.
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