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We calculate the quark self-energy at one-loop level at high temperature, taking into account
contributions from both the (chromo)electric scale gT and the (chromo)magnetic scale g2T. While
reproducing standard massive excitations due to the electric scale, we uncover a novel massless excitation
ascribable to the magnetic scale. The residue of this massless excitation is nonpositive at all temperatures,
which consequently gives rise to positivity violation in the quark spectral functions. This demonstrates the
profound impact of confinement effects on thermal quark collective excitations, which manifest genuine
long-range correlations in the system.
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As predicted by asymptotic freedom in quantum
chromodynamics (QCD), hadronic matter at sufficiently
high temperatures and densities undergoes a transition to a
novel state of deconfined matter, known as the quark-gluon
plasma (QGP), whose properties are strongly influenced by
collective excitations. Creating and studying the QGP is
one of the main goals of the ultrarelativistic heavy-ion
collision experiments at RHIC and LHC. The properties of
the created bulk matter display the feature of a strongly
coupled liquid characterized by long-range correlations
(see Ref. [1] and references therein). In turn, it is distin-
guished by a small viscosity, which spoils the expectation
from perturbation theory of a weakly coupled plasma where
long-range correlations are missing [2]. This has generated
interest in strong-coupling formalisms, such as the cel-
ebrated AdS/CFT correspondence (see Ref. [3] for a
review).
Apart from the intrinsic energy scale, the temperature T,

the collective behavior of a hot QGP gives rise to two
additional thermal scales, namely the (chromo)electric
scale gT and the (chromo)magnetic scale g2T. While the
electric scale can be tackled by resummed perturbation
theory (see Ref. [4] for reviews), the magnetic scale still
poses profound challenges. Because of the absence of an
infrared (IR) cut off by screening in the magnetic sector, the
perturbative expansion of finite-temperature Yang-Mills
theory breaks down fundamentally at the magnetic scale,
which is the origin of the so-called Linde problem [5]. It has
been realized that the nonperturbative nature of the mag-
netic scale is intimately related to the confining properties
of the dimensionally reduced Yang-Mills theory at high
temperature [6]. This strongly suggests that a confinement
mechanism has to be incorporated within perturbative
resummation even when dealing with the QGP phase.

A formalism to tackle this issue is the Gribov-Zwanziger
(GZ) action, which is well known from studies of color
confinement [7]. It regulates the IR behavior of QCD by
fixing the IR residual gauge transformations that remain
after applying the Faddeev-Popov procedure. The GZ
action is renormalizable, and it thus provides a systematic
framework for perturbative calculations (i.e., g ≪ 1) incor-
porating confinement effects, which is the course of study
here. The gluon propagator in the general covariant gauge
from the GZ action reads

DμνðPÞ ¼
�
δμν − ð1 − ξÞP

μPν

P2

�
P2

P4 þ γ4G
; ð1Þ

where ξ is the gauge parameter and γG, called the Gribov
parameter, is solved self-consistently from a gap equation
that is defined to infinite loop orders (see Ref. [8] for
reviews). The GZ gluon propagator is IR suppressed,
manifesting confinement effects (see Ref. [9] for a review),
and is a significant improvement over the one arising in the
original Faddeev-Popov quantization that forms the basis
for perturbative calculations. The gap equation at one-loop
order can be solved analytically at asymptotically high
temperatures and gives [10,11]

γG ¼ D − 1

D
Nc

4
ffiffiffi
2

p
π
g2T; ð2Þ

where D is the space-time dimension and Nc is the number
of colors. Equation (2) provides a fundamental IR cutoff at
the magnetic scale for the GZ action. Because of the
incorporation of the magnetic scale, the resulting equations
of state show stable and robust behavior that is consistent
with lattice data down to nearly the deconfinement
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transition [11,12], in contrast to results from conventional
resummed perturbation theory [13]. These results therefore
highlight the significant role played by the magnetic scale
in the phenomenologically relevant temperature regime.
An important measure of collective behavior in a hot

QGP is the self-energy of quarks and gluons, from which
screening masses, dispersion relations, and spectral func-
tions of collective excitations are derived. In this context it
is worth pointing out the intimate connection between two
fundamental features of long-range correlations and con-
finement in QCD. On one hand, color confinement is
deeply related to positivity violation of the spectral function
[14], which has been intensively studied using lattice QCD
and functional methods at both zero and finite temperatures
for gluons (see Ref. [15] and references therein). The study
of the quark sector has not been equally conclusive [16].
Positivity violation is so far a missing feature in resummed
perturbation theory calculations. On the other hand, in
order to describe a strongly coupled QGP, massless modes
that incorporate long-range correlations have been studied
in functional methods [17] and through the AdS/CFT
correspondence [18]. While massless modes have been
studied using resummed perturbation theory for the
Nambu–Jona-Lasinio model, the Yukawa model, QED,
and perturbative QCD [19], there has not yet been a
proposal for QCD that would render the system strongly
coupled.
In this Letter, we present a first study of the thermal

quark self-energy incorporating effects from both electric
and magnetic scales (via the GZ action at one-loop level) at
the high-temperature limit (where g ≪ 1) using systematics
of the hard-thermal-loop (HTL) effective theory [20]. There
have been similar studies for the quark self-energy with
nonperturbative gluons at finite density [21] and in strong
magnetic fields [22]. While reproducing the standard
massive excitations due to the electric scale, we uncover
a novel massless excitation ascribable to the magnetic
scale. This massless mode induces positivity violation of
the quark spectral functions and incorporates long-range
correlations in the system. We are aware of the fact that the
refined Gribov-Zwanziger action is in better agreement
with lattice data [23]. However, the emergence of the
massless mode is exclusively due to the nature of complex
conjugate poles, which is a shared feature of all Gribov-like
approaches. We thus use the GZ action as a simple
demonstration, without the loss of generality.
The Euclidean one-loop quark self-energy reads

ΣðPÞ ¼ ðigÞ2CF

XZ
fKg

γμSðKÞγνDμνðP − KÞ; ð3Þ

where g is the running coupling,CF ¼ ðN2
c − 1Þ=2Nc is the

quadratic Casimir operator (in fundamental representation),
SðPÞ ¼ 1=P is the quark propagator, and DμνðPÞ is the

gluon propagator, which is taken from Eq. (1) in our
calculation [24].
It is well known that the gauge-dependent terms in the

one-loop quark self-energy do not contribute at the mass
dimension of ½T2�, which is relevant for the screening mass,
dispersion relations, and spectral functions [25], and thus
the appropriate gauge-invariant contribution [equivalent to
setting ξ ¼ 0 in Eq. (3)] for our purposes after carrying out
the Matsubara summation reads

ΣðPÞ ¼ ðigÞ2CF
2 −D
2

X
�

Z
d3k
ð2πÞ3

1

4E�

�
½1þ nBðE�Þ

− nFðkÞ�
�

iγ0 þ k̂ · γ
iP0 þ kþ E�

þ iγ0 − k̂ · γ
iP0 − k − E�

�

þ ½nBðE�Þ þ nFðkÞ�

×

�
iγ0 þ k̂ · γ

iP0 þ k − E�
þ iγ0 − k̂ · γ
iP0 − kþ E�

��
; ð4Þ

where E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk − pÞ2 � iγ2G

p
, nB and nF are the Bose-

Einstein and Fermi-Dirac distributions, and k̂ ¼ k=k and
k ¼ jkj is the norm of the three-dimensional vector. In the
following, we set the space-time dimension D ¼ 4.
From the HTL effective theory, we know that the leading

contribution to the two-point correlation function from
ΣðPÞ stems from soft external momenta P ≪ K [20].
For this calculation we are interested in the high-T behavior
of the self-energy in the small-g regime; therefore, we
may expand Eq. (4) in terms of small P ¼ ðP0; pÞ over k by
using nBðE�Þ≃ nBðE0

�Þ, kþ E� ≃ 2k, and k − E�≃
k − E0

� þ p · k=E0
�, where E0

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � iγ2G

p
. As a result,

Eq. (4) becomes

ΣðPÞ≃−ðigÞ2CF

X
�

Z
∞

0

dk
2π2

k2
Z

dΩ
4π

~n�ðk;γGÞ
4E0

�

×

�
iγ0þ k̂ · γ

iP0þk−E0
�þ p·k

E0
�

þ iγ0− k̂ · γ

iP0−kþE0
�− p·k

E0
�

�
; ð5Þ

where ~n�ðk; γGÞ≡ nBð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � iγ2G

p
Þ þ nFðkÞ and

R
dΩ ¼R

2π
0 dϕ

R
π
0 d cos θ denotes the measure for the angular

integral. The quark screening mass mq squared is conven-
tionally defined as the coefficient in front of the angular
integral of the self-energy in the HTL setup. By analogy,
the quark screening mass, which in our calculation incor-
porates effects from the magnetic scale, reads

m2
qðγGÞ ¼ g2CF

1

4π2
X
�

Z
∞

0

dk
k2

E0
�
~n�ðk; γGÞ; ð6Þ

which reduces to the conventional quark screening mass
m2

qð0Þ ¼ CFg2T2=8 for γG ¼ 0. In this exploratory study,
we will neglect running coupling effects. In Fig. 1 we show
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the resulting mqðγGÞ from Eq. (6) normalized by its value
from conventional resummed perturbation theory. It is clear
from the plot that mq receives negative contributions from
γG, which is a manifestation of antiscreening effects
generated by the magnetic scale. Although the effect is
modest in the studied range of the coupling, this is a
profound signal of the buildup of long-range correlations in
the system and similar antiscreening effects have been
observed on the lattice for the Debye screening mass [26].
The quark screening mass in Eq. (6) also plays a crucial

role for the active fermionic degrees of freedom that emerge
from studying the dispersion relation. In order to calculate
properties of the real-time retarded propagator we need to
perform an analytical continuation to Minkowski space. We
define the Minkowskian resummed quark propagator

iS−1ðPÞ ¼ P − ΣðPÞ ¼ A0γ0 − ASp̂ · γ; ð7Þ

which can be decomposed into positive and negative
helicity-to-chirality contributions, as usual [27]. Defining
the modified frequencies ~ω�

1 ≡ E0
�ðωþ k − E0

�Þ=k and
~ω�
2 ≡ E0

�ðω − kþ E0
�Þ=k, the angular integrals follow

straightforwardly by making use of the Legendre functions
Q0ðω; pÞ≡ ð1=2pÞ logðωþ p=ω − pÞ and Q1ðω; pÞ≡
½1 − ωQ0ðω; pÞ�=p. With the help of these definitions
the coefficients A0 and AS in Eq. (7) can be written as

A0ðω; pÞ ¼ ω −
2g2CF

ð2πÞ2
X
�

Z
dkk ~n�ðk; γGÞ

× ½Q0ð ~ω�
1 ; pÞ þQ0ð ~ω�

2 ; pÞ�; ð8Þ

ASðω; pÞ ¼ pþ 2g2CF

ð2πÞ2
X
�

Z
dkk ~n�ðk; γGÞ

× ½Q1ð ~ω�
1 ; pÞ þQ1ð ~ω�

2 ; pÞ�: ð9Þ

Because of parity symmetry [27], it is sufficient to
study the singularities of the denominator ΔþðγGÞ≡
½A0ðp0; pÞ − ASðp0; pÞ�−1 and their residues, defined as
Z−1 ≡ ∂Δðp0; pÞ−1=∂p0jp0¼ωpole

, to map out the pole
structure of the full propagator in Eq. (7). The structures
of singularities and branch cuts of Eq. (7) are more involved
than in the conventional case, so the Wick rotation iP0 →
ωþ i0þ should be treated with more care. In the conven-
tional HTL effective theory, there is a branch cut in the self-
energy spanning ω ¼ �p. This forbids a Wick rotation in
the spacelike regime, ω < p, and consequently prohibits
the existence of any collective excitations there. Because
of the complex-conjugate structures in Eqs. (8) and (9), the
branch cuts are pushed away from the origin of the complex
ω plane, which sanctions the use of the Wick rotation there.
The radius of the allowed regime grows with the scale g2T,
which effectively reveals a novel magnetic scaling for non-
Abelian plasmas. The analytic-continuation property of our
setup in the timelike regime, ω > p, is the same as in the
conventional HTL effective theory. Further details will be
provided in an upcoming publication.
In Fig. 2 we plot the dispersion relations (upper panel)

and their corresponding residues (lower panel) as a function
of the momentum scaled by the quark screening mass
defined in Eq. (6). In contrast to the conventional HTL
expectation, we find three poles in the propagator. First
of all, we recover the screened excitations of the plasma,

FIG. 1 (color online). The quark screening mass mqðγGÞ from
Eq. (6), normalized by the perturbative value mqð0Þ.

FIG. 2 (color online). Dispersion relations (upper panel) and the
corresponding residues (lower panel) for the quark (ωþ), anti-
quark or plasmino (ω−), and Gribov (ωG) poles. The scaling with
mqðγGÞ has been numerically established for g≲ 2.
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ω ¼ ωþðp; γGÞ and ω ¼ ω−ðp; γGÞ, the so-called quark
and antiquark or plasmino quasiparticles depicted by
dashed-dotted and dashed (blue) curves in Fig. 2, respec-
tively. As expected, we confirm numerically that the low-
momentum limit of the dispersion relation corresponds to
the screening mass, ω�ð0; γGÞ ¼ mqðγGÞ. This demon-
strates that our definition of the screening mass captures
the main modification of these modes for a wide range of
couplings. The familiar behavior of the corresponding
residues Z�ðpÞ also follows the same expectations, see
the bottom panel of Fig. 2. Although the calculation is
carried out at g ≪ 1, the results are independent of g and we
have verified this explicitly up to g ∼ 2, which covers
the phenomenologically most relevant regimes. This g-
independent behavior is in direct analogy to the conven-
tional HTL case [27].
Surprisingly, we uncover a novel excitation that we call

the Gribov pole, ω ¼ ωGðp; γGÞ. It describes massless
fermionic excitations in the plasma that are governed by
the dispersion relation ω ¼ vsp at small momenta, see the
solid (red) curves in Fig. 2. We have numerically estab-
lished vs ≈ 1=

ffiffiffi
3

p
(speed of sound), which is independent

of the coupling for the studied range. According to our
discussion above, the allowed range for the Gribov mode
“grows” in the ðω; pÞ plane with increasing g due to the
magnetic scaling. The vertical lines in Fig. 2 delimit the
range of permitted momenta for the Gribov mode according
to the magnetic scaling for two values of g. This behavior
indicates that the massless mode plays a bigger role as T is
decreased towards the deconfinement transition, see also
Ref. [28]. For momenta larger than the permitted one for a
given coupling, we enter the regime of branch cuts and
Landau damping takes place.
Moreover, the pole goes along with a residue

ZGðpÞ < 0, which directly implies positivity violation
of the corresponding spectral functions in the region of
spacelike momenta. This implies that this excitation does
not possess a Källen-Lehmann representation [29] and,
accordingly, does not represent a physical quasiparticle
excitation and signals effects of confinement [14]. In our
case it can ultimately be traced back to the fact that the
structure of Eqs. (8) and (9) always brings about canceling
imaginary parts [30] (theories with similar properties
have been studied in the context of i-particles [31]).
Consequently, the spacelike regime, which is attributed
to Landau damping in the conventional HTL effective
theory, also accommodates collective excitations. The
residue as a function of the rescaled momentum,
ZG½p=mqðγGÞ�, is also scaling with mq and tends to zero
at vanishing momenta, ZGð0Þ ¼ 0. These novel features
are direct manifestations of the long-range confinement
effects surviving at finite temperatures in the plasma. This
is to our knowledge the first result showing profound
relations between the massless mode and positivity
violation.

In conclusion, we have calculated the properties of
fermionic excitations in a hot QGP. Our setup, which
incorporates the nonperturbative magnetic screening scale
via the Gribov-Zwanziger action, has revealed a novel
massless excitation in addition to the conventional quasi-
particle and hole excitations. This mode induces positivity
violation in the quark spectral functions, which falls in line
with expectations from lattice QCD and functional meth-
ods. For a wide range of couplings—including the most
relevant for the QGP created at RHIC and LHC energies,
g≲ 2—the characteristics of these modes are controlled by
a single function of the screening mass mqðγGÞ, which is in
direct analogy to the conventional HTL case. In addition,
the emergent magnetic scaling protects the existence of the
massless mode. It is a generic feature of Gribov-like
approaches that gluon propagators possess complex-
conjugate poles [7,23] (see also Refs. [8,9] for reviews).
This property gives rise to the complex-conjugate struc-
tures in deriving the coefficients A0 and AS in the resummed
quark propagator (7), and consequently generates the
massless mode. Therefore, the results presented in this
Letter reflect common features of Gribov-like approaches,
though the calculation is concretely done using the GZ
action as a simple demonstration.
The obtained results in our setup are genuine non-Abelian

effects and rely on the importance of the magnetic scale,
which in the weak-coupling regime governs the dynamics of
large distances. Our results have shed new light on the active
degrees of freedom released in the course of a heavy-ion
collision and will have profound effects on phenomenologi-
cal interpretations of experimental data. A recent shear
viscosity calculation in Yang-Mills theory using positivity-
violating spectral functions has obtained encouraging first
results in line with expectations of a strongly coupled plasma
[32]. Furthermore, a massless mode in the plasma can be a
source of Cherenkov radiation [33] and can give rise to
instabilities in the thermodynamic quantities.
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