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Based on Jaynes’s maximum entropy principle, exponential random graphs provide a family of
principled models that allow the prediction of network properties as constrained by empirical data
(observables). However, their use is often hindered by the degeneracy problem characterized by
spontaneous symmetry breaking, where predictions fail. Here we show that degeneracy appears when
the corresponding density of states function is not log-concave, which is typically the consequence of
nonlinear relationships between the constraining observables. Exploiting these nonlinear relationships here
we propose a solution to the degeneracy problem for a large class of systems via transformations that render
the density of states function log-concave. The effectiveness of the method is demonstrated on examples.
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Our understanding and modeling of complex systems is
always based on partial information, limited data and
knowledge. The only principled method of predicting
properties of a complex system subject to what is known
(data and knowledge) is based on the Maximum Entropy
Principle of Jaynes [1,2]. Using this principle, he re-derived
the formalism of statistical mechanics, both classical [1]
and the time-dependent quantum density-matrix formalism
[2], using Shannon’s information entropy [3]. The method
generates a probability distribution PðμÞ over all the
possible (micro)states μ of the system by maximizing
the entropy S½P� ¼ −

P
μPðμÞ lnPðμÞ subject to what is

known, the latter expressed as ensemble averages over
PðμÞ. In this context, the given data and the available
knowledge act as constraints, restricting the set of candi-
date states describing the system. PðμÞ is then used via the
usual partition function formalism to make unbiased
predictions about other observables.
The applicability of Jaynes’s method extends well beyond

physics [4], and in particular, it has been applied in biology
[5–12], neuroscience [13–21], ecology [22,23], sociology
[24,25], economics [26,27], engineering [28,29], computer
science [30], etc. It also received attention within network
science [31–38], leading to a class of models known as
exponential random graphs (ERGs). Despite its popularity,
however, this method often presents a fundamental problem,
the degeneracy problem, that seriously hinders its appli-
cability [34,35]. When this problem occurs, PðμÞ lacks
concentration around the averages of the constrained quan-
tities and the typical microstates do not obey the constraints.
In the case of ERGs, the generated graphs, for example, may
either be very sparse, or very dense, but hardly any will have
a density close to that of the data network. Predictions based
on such distributions can be significantly off. Two basic

questions arise related to the degeneracy problem: (1) Under
what conditions does it occur? (2) How can we eliminate or
minimize this problem?
In this Letter we answer both questions and present a

solution that significantly reduces degeneracy, then illus-
trate its effectiveness on concrete examples. Wewill present
our analysis and results using the language of networks and
ERG models; however, our findings are generally appli-
cable. Let us consider the set GN of all labeled simple
graphs G ∈ GN (no parallel edges, or self-loops) on N
nodes, corresponding here to microstates μ, and an
arbitrary set of graph measures or observables mðGÞ ¼
m1ðGÞ;…; mKðGÞ, e.g., the number of edges mj, 2-stars
m∨, triangles m

▵
, the degree of the 9th node, etc. These

measures represent the constraints and we assume that we
are given specific values m0, for them (input data). They
may come from an empirical network G0, or could
represent averages from several empirical data sets.
A key assumption in Jaynes’s method is to impose these
data at the level of ensemble averages:

m0 ¼ hmðGÞi ¼
X

G∈GN

mðGÞPðGÞ; ð1Þ

and the goal is to determine the ensemble itself, i.e., the
probabilities PðGÞ for all G, as constrained by Eq. (1) and
normalization:

P
G∈GN

PðGÞ ¼ 1. Since the number of
constraints K is usually small, the system of Eq. (1) is
strongly underdetermined, the number of unknowns being
jGN j ¼ 2OðN2Þ. Following Jaynes, the least biased distribu-
tion PðGÞ obeying the constraints is the one that maximizes
the entropy S½P� ¼ −

P
G∈GN

PðGÞ lnPðGÞ subject to
Eq. (1) and normalization. The method of Lagrange
multipliers then yields the family of Gibbs distributions:
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PðGÞ ¼ PðG; βÞ ¼ e−
P

K
k¼1

βkmkðGÞ

ZðβÞ ¼ e−β·mðGÞ

ZðβÞ ; ð2Þ

where ZðβÞ ¼ P
G∈GN

e−β·mðGÞ is the partition function. The
β ¼ ðβ1;…; βKÞ are Lagrange multipliers associated with
the constraints m ¼ ðm1;…; mKÞ, determined from solv-
ing system (1) with Eq. (2), i.e.,

hmki ¼
∂FðβÞ
∂βk ð3Þ

where FðβÞ ¼ − lnZðβÞ denotes the free energy. The
average of some other graph measure qðGÞ in this ensemble
will be hqi ¼ P

G∈GN
qðGÞPðG; βÞ. The distribution

PðG; βÞ defines the corresponding exponential random
graph model, hereinafter referred to as the ERGðmÞmodel.
Equation (3) admits a maximum likelihood interpretation:
its solution is the set of parameters β that maximize the
probability PðG0; βÞ ¼ Z−1ðβÞe−β·m0

of the graph G0 for
which mðG0Þ ¼ m0. Note that all graphs having the same
properties, m will have the same probability in the
ERGðmÞ model.
Since the partition function is determined by the graph

measures only, we may write ZðβÞ ¼ P
mN ðmÞe−β·m,

where N ðmÞ is a counting function, representing the
number of graphs that have the same values for these
measures, equivalent to the density of states function in
physics. For example, N ðm∣; mΔÞ is the number of graphs
with m∣ edges and mΔ triangles. To simplify the notations,
in the following we will work with adimensional and
rescaled quantities mi ∈ ½0; 1� [39]. Let us denote the
domain of N by D¼fm∈ ½0;1�KjN ðmÞ≥ 1g. Therefore,
the probability that a graph sampled by the ERGðmÞmodel
will have the given m is

pðm; βÞ ¼ N ðmÞ
ZðβÞ e−β·m; ð4Þ

and thus we can write Eq. (3) as the mean of pðm; βÞ:

hmi ¼
X

m

mpðm; βÞ: ð5Þ

Sharp constraints.—In the discussion above the con-
straints were imposed at the level of averages. It may
happen, however, that some of the data hold for all states of
the system, akin to integrals of motion in physics. In this
case, we restrict ourselves to the largest set of graphs
GNðm0Þ⊆GN , all having the same value m0 for those
particular measures. We refer to these types of constraints
as sharp constraints. Examples include the set of all graphs
with a given number of edges [the GðN;MÞ model],
introduced by Erdős and Rényi [40], or those with a given
degree sequence [41,42], or with a given joint-degree
matrix [43]. While sharp constraint problems are math-
ematically hard in general, counting problems, i.e., com-
puting N ðmÞ, were shown to be the hardest [44,45].

The degeneracy problem.—When solving Eq. (3) [or
Eq. (5)] for β with given hmi ¼ m0 we are fixing the
parameters βðm0Þ≡ β0. It may happen that pðm; β0Þ is
multimodal, with the probability mass concentrated around
two or more disjoint and well separated (byOð1Þ distances)
domains in the observables m, in which case the ERGðmÞ
is called degenerate. As examples, let us consider the two
ERG models, ERGðmj; m∨Þ and ERGðmj; m▵

Þ, shown in
Fig. 1. Figures 1(b) and 1(d) show pðm; βÞ at parameter
values corresponding to averages ðhm1i; hm2iÞ indicated by
the black dots. We see that both models are degenerate: for
these input values (or corresponding parameters), the
sampled graphs will be either very dense or very sparse,
practically none with observable values similar to the input
data. This is true even in the case when the averages are
realizable by specific graphs [seen more clearly in
Fig. 1(d)]. Observe that the hmi averages can come from
any point in the convex hull of D (and only from there).
Also note that in both cases N ðmÞ itself is unimodal;
however, pðm; β0Þ is multimodal [46]. It is important to
emphasize that when degeneracy occurs the graphs
sampled by pðm; βÞ are coming from regions with signifi-
cant probability mass whose separation is large, compa-
rable to unity. Strictly speaking, N ðmÞ is a combinatorial
function and it may be jagged locally (integer effects).
However, samples from nearby peaks are similar, which is
fine for modeling purposes, it is not considered degenerate.

( | )

(a) (b)

(c) (d)

–

( | )

( | )

|

( | )

|

FIG. 1 (color online). Degenerate ERG models. Plots are from
exact enumeration of all labeled graphs on N ¼ 9 nodes. (a) The
counting function N ðmj; m∨Þ. Color intensity is proportional to
the value of N , white means N ¼ 0 there. (b) Distribution
pðm; βÞ from ERGðmj; m∨Þ at β0j ¼ 2.20 and β0∨ ¼ −0.313,
corresponding to the black dot. (c) N ðmj; m▵

Þ. (d) pðm; βÞ from
ERGðmj; m▵

Þ with β0j ¼ 1.24 and β0Δ ¼ −0.610 from the black

dot. Insets show 3D versions of the intensity plots. Note from
Eq. (4) that the domains of N and p always coincide.
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For that reason, (keeping the notation) in the remainder we
will refer to the smoothened, continuous version of N ðmÞ,
preserving only its long-wavelength properties. For
another, non-network example of a degenerate maximum
entropy model see Supplemental Material [46]. Degeneracy
can be best understood in 1D, K ¼ 1. Let f∶½a; b� → Rþ
be a twice differentiable positive function, and let
gðxÞ ¼ fðxÞe−βx. Since gðxÞ > 0, the condition for gðxÞ
not to be multimodal for any β is that it should not have any
minima in ða; bÞ for any β. This is true if in any stationary
point x0, i.e., with g0ðx0Þ ¼ 0, the function g is concave,
g00ðx0Þ < 0. For a stationary point x0 we have
β ¼ f0ðx0Þ=fðx0Þ. Computing g00ðx0Þ and eliminating β
from it using the above, we get f00ðx0Þfðx0Þ < f0ðx0Þ2.
Any x0 ∈ ða; bÞ can be stationary, since fðx0Þ > 0 and thus
the corresponding β ¼ f0ðx0Þ=fðx0Þ always exists to
make x0 stationary. Therefore, gðxÞ will be nondegenerate
if and only if f00ðxÞfðxÞ − f0ðxÞ2 < 0 for all x ∈ ða; bÞ.
This is, however, equivalent to saying that fðxÞ is
strictly log-concave; i.e., ln fðxÞ is (strictly) concave:
d2( ln fðxÞ)=dx2 < 0 for any x ∈ ða; bÞ. For example,
Gaussians are log-concave. Generalizing this for arbitrary
dimensions (for proof see the Supplemental Material [46]),
we can announce the following:
Theorem.—The ERGðmÞ is nondegenerate if and only

if the density of states N ðmÞ is strictly log-concave.
The necessary and sufficient conditions for function

N ðmÞ to be log-concave [50] are that (i) its domain D is
convex and (ii) if (i) holds, to satisfy the Prékopa-Leindler–
type inequality N ðλmþ ð1 − λÞnÞ > N ðmÞλN ðnÞ1−λ for
any 1 < λ < 1 andm;n ∈ D [51]. It is important to note that
the theorem above reduces degeneracy to purely graph
theoretical properties. In two or higher dimensions degen-
eracy occurs frequently, and the typical approach has been
simply to switch to an entirely different set of measures [52].
Realistically, however, we might not have other data, or its
collection would not be an option; we want to extract the
maximum possible information from the available data.
Additionally, onewould prefer to let the domain of expertise
dictate the natural variables. For example, the triangle count
is an important variable in sociology, as it expresses the level
of transitivity, an important measure for social networks; yet
the corresponding ERG model is degenerate [32].
Solution.—Here we propose to work still with the same

variables m (same data) as in the degenerate ERG model,
however, to consider a one-to-one transformation m ↔
ξ ¼ FðmÞ such that the corresponding counting function

N̄ ðξÞ ¼ N (F−1ðξÞ) ð6Þ
is log-concave [53]. Because of the one-to-one nature, one
can still work with or plot the distributions in the same
coordinate system m [see Figs. 2(b) and 2(c)], but the
graphs are sampled by the nondegenerate model ERGðξÞ ¼
ERG(FðmÞ), with constraints ξ0 ¼ Fðm0Þ ¼ hξi. There is
no recipe for obtaining such a transformation in general (it

might even not exist, e.g., whenD is not singly connected);
however, there is a large class of problems where this
can be achieved, to which the degenerate models in the
literature belong. This is the case when the convexity
condition (i) is violated. To better understand the nature of
the F function in this situation, let us focus on the 2D case.
If m1ðGÞ and m2ðGÞ were independent, D would be
rectangular and therefore convex. Instead, the shapes of
the domains in Fig. 1 indicate that there is a nonlinear
confining relationship between the variables, on average.
For the ðmj; m∨Þ case it holds that m∨ ∼m2

j on average
[Fig. 2(a), thick orange line]. Similarly, for ðmj; mΔÞwe have
mΔ ∼m3

j (not shown). Focusing on the ðmj; m∨Þ case we
can pinpoint why such nonlinear dependencies cause degen-
eracy. Since m∨ ∼m2

j , choosing the constraints arbitrarily
we are independently setting both the average of mj and its

spread σ ¼ ðhm2
j i − hmji2Þ12. This is shown most directly by

looking at an ERGðmj; m2
j Þ model (see Fig. 3). Since the

network is finite, the spread σ can be tuned from a small
value corresponding to a unimodal distribution for mj,
Figs. 3(a)–3(c), to its maximum Figs. 3(d)–3(f), where the
probability mass is bimodal, hence causing degeneracy.
Note, a linear relation between the variables will not cause
degeneracy. This suggests to choose F such as to convexify
the domain via linearization, i.e., to have ξ1 ∼ ξ2. For
example, for the ðmj; m∨Þ case this could be done via
ξj ¼ m2θ

j , ξ∨ ¼ mθ∨, with θ > 0 arbitrary, as shown in
Fig. 2(b) for θ ¼ 1, or for θ ¼ 1=2 in the model of Fig. 4.
Recall that in the original (degenerate) ERGðmÞ

we had hmi ¼ m0 precisely, by definition. However,
the new model ERGðξÞ is constrained by hξiξ ¼
Fðm0Þ≡ ξ0, where the subscript ξ indicates averages
in ERGðξÞ. Here hmiξ ≠ m0, yet hmiξ ≈m0 will hold.
Let κ0 denote the Lagrange parameters in the ERGðξÞ
model. For the ith component, the difference is on
the order of 1

2
jPξðξ − ξ0ÞTH½F−1

i �ðξ0Þðξ − ξ0Þpðξ; κ0Þj ≤
ðK=2Þ∥H½F−1

i �ðξ0Þ∥2∥Covðξ; ξÞ∥2, where H½F−1
i �ðξ0Þ is

( | )

(a)

|

( | )

|

( | )

|

(b) (c)

FIG. 2 (color online). Domain D (black dots) and its convex
hull (purple shading); the averages hmi take their values from the
convex hull. The orange line is m∨ ∼mj2. (a) ERGðmj; m∨Þ, in
ðmj; m∨Þ space. Note the large region of possible hmi values with
no realizable graphs (no black dots). (b) ERGðm2

j ; m∨Þ, in

ðm2
j ; m∨Þ space. Now D and its convex hull almost coincide.

(c) ERGðm2
j ; m∨Þ in ðmj; m∨Þ, compare with (a).
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the Hessian of F−1
i ðξÞ computed in ξ0 and ∥⋅∥2 is the

spectral norm. Since ERGðξÞ is nondegenerate, pðξ; κ0Þ
will be concentrated around ξ0, in a region that is small
compared to unity, and additionally, over this region the
variability of F is small [F straightens the whole domainD,
varying significantly only over Oð1Þ distances]. Thus,
while this transformation leads to minor differences, it
resolves the degeneracy problem and the samples are with
high probability from the neighborhood of graphs for
which the given constraints are typical.
Validation.—In the following we test the method on

Zachary’swell-knownkarateclub (ZKC)dataset [54],which
describesanetworkG0 ofclub friendships (theSupplemental
Material [46] shows the test for another network [49]).
ZKC has N ¼ 34, m0

j ¼ 78, m0∨ ¼ 528 and m0
Δ ¼ 45.

Using Markov chain Monte Carlo (MCMC) sampling and
a stochastic root findingmethod, we fitted the ERGðmj; m∨Þ
model to G0 obtaining β0j ¼ 2.610, β0∨ ¼ −0.08125, and a

degenerate pðmj; m∨; β0j ; β0∨Þ, shown in Fig. 4(a).
Next we fitted the model ERGðξj ¼ mj; ξ∨ ¼ ffiffiffiffiffiffiffi

m∨
p Þ,

obtaining κ0j ¼ 3.625 and κ0∨ ¼ −7.998 and a nondegen-

erate distribution pðmj; m∨; κ0j ; κ0∨Þ, shown in Fig. 4(b). The
averages are summarized in Table I. Even though here we
solve for h ffiffiffiffiffiffiffi

m∨
p iξ ¼

ffiffiffiffiffiffiffi
m0∨

p
, we expect that hm∨iξ ≈m0∨.

This is confirmed in the hm∨i column of Table I. Note that
due to the degeneracy of ERGðmj; m∨Þ, its prediction for
h ffiffiffiffiffiffiffi

m∨
p i2 is 370, far from 528, whereas ERGðmj;

ffiffiffiffiffiffiffi
m∨

p Þ
predicts all quantities well.
Let us now consider the number of triangles mΔ. To the

extent in which m0
j and m0∨ determine mΔ, the correspond-

ing ERG model should predict mΔ as well. Unsurprisingly,
ERGðmj; m∨Þ produces a bimodal distribution pðmΔÞ, as

shown in Figs. 4(c) and 4(d), and predicts hmΔi ¼ 78, far
from 45. Additionally, 45 and 78 are produced with low
probability in the ERGðmj; m∨Þ model [see Fig. 4(d)].
The ERGðmj;

ffiffiffiffiffiffiffi
m∨

p Þ convexified model, however, predicts
hmΔiξ ¼ 40, and both 40 and 45 are produced with high
probability in this model, see Fig. 4(e).
It is important to note that the degeneracy problem,

the reason for its occurrence, and the solution proposed here
are general, applicable beyond network modeling. We have
shown that degeneracy will typically appear when the
constraining observables (input data) are nonlinearly con-
straining one another so that the density of states function
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FIG. 4 (color online). Modeling the Zachary Karate Club data.
Distributions for ERGðmj; m∨Þ [(a), (c), (d)] and ERGðmj;

ffiffiffiffiffiffiffi
m∨

p Þ
[(b), (e)] after fitting. (a) pðmj; m∨Þ in ERGðmj; m∨Þ and
(b) pðmj; m∨Þ in ERGðmj;

ffiffiffiffiffiffiffi
m∨

p Þ. The crosshairs are at
ðm0

j ; m
0∨Þ. Insets are magnifications around ðm0

j ; m
0∨Þ. Arrows

(a) indicate the two modes of the degenerate distribution. (c)–(e)
show pðmΔÞ in the two models. The red vertical lines are at m0

Δ
and the dashed ones are model averages.
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FIG. 3 (color online). Distribution of the edge count mj of the
sampled graphs (N ¼ 9 nodes) in theERGðmj; m2

j Þmodel at various

parameter values, where pðmjÞ ∝ N ðmjÞ exp ð−βmj − γm2
j Þ.

TABLE I. Averages of measures in the fitted ERG models. G0

denotes the ZKC network. For the averages we also indicate the
standard error of the MCMC estimates.

hmji hm∨i h ffiffiffiffiffiffiffi
m∨

p i2 hmΔi
G0 (ZKC) 78 528 528 45
ERG(mj; m∨) 77.8�0.5 530�9 370�4 77.7�2.3
ERG(mj;

ffiffiffiffiffiffiffi
m∨

p
) 77.9�0.5 530.7�2.7 527.3�2.5 39.5�0.3
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is not log-concave. To avoid degeneracy, but still be able to
use the same input data, here we proposed one-to-one
mappings of the observables (so that no information is lost)
inways that render thedensityof states function log-concave.
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