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We investigate a new form of collective dynamics displayed by Thiovulum majus, one of the fastest-
swimming bacteria known. Cells spontaneously organize on a surface into a visually striking two-
dimensional hexagonal lattice of rotating cells. As each constituent cell rotates its flagella, it creates a
tornadolike flow that pulls neighboring cells towards and around it. As cells rotate against their neighbors,
they exert forces on one another, causing the crystal to rotate and cells to reorganize. We show how these
dynamics arise from hydrodynamic and steric interactions between cells. We derive the equations of motion
for a crystal, show that this model explains several aspects of the observed dynamics, and discuss the
stability of these active crystals.
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Characterizing microbial interactions [1–6] is essential to
understanding the structure and dynamics of ecosystems
[7]. One class of interactions are mediated by purely
physical mechanisms, wherein the power generated by
individual moving cells is dissipated on the scale of the
system, resulting in large-scale coherent structures. These
biological “active” fluids can be either two dimensional
[8,9], as in the case of swarming bacteria on a surface
[10,11], or three dimensional, for example, bacterial
turbulence [12–14] and bioconvection [15–17]. Notably,
when cells swim close to a surface, their motion is coupled
not only to neighboring cells but also to the backflow of
fluid off the surface [18]. This coupling leads to novel
dynamics including circular swimming [19–22] and scat-
tering [23–26]. Both experiments and theory have focused
on the instabilities by which collective modes arise
[9,27–29], their structure and dynamics [8,10–13], and
their effect on the bulk fluid properties, such as viscosity
[30] and diffusivity [31–33].
To investigate how the large-scale qualities of collective

motion relate to the behavior and physiology of the
constituent cells, we present observations of the bacteria
Thiovulum majus [34,35]. Free-swimming T. majus cells
differ from commonly studied bacteria (e.g., Escherichia
coli and Bacillus subtilis) in three important respects. First,
T. majus is an order of magnitude faster, swimming at
speeds up to 600 μms−1 [36]. Second, T. majus are large
(diameter a ¼ 8.5 μm) nearly spherical cells [37]. Finally,
T. majus does not display the typical run-and-tumble
behavior of bacterial chemotaxis but rather turn smoothly
through the fluid [38,39].
It has been noted [18] that the screening effect of a

surface tends to attenuate cell-cell hydrodynamic inter-
actions and may limit collective motion. Nonetheless, we
observe hundreds of T. majus cells spontaneously assemble

on a surface into a hexagonal packing. Bacterial crystals
form as a cell presses against a smooth surface and creates a
tornadolike flow that attracts neighboring cells, squeezing
them into a two-dimensional crystal rotating bacteria.
Proceeding from a force balance on each cell, we show
how these crystals form, rotate, and display periodic cycles
and irreversible dynamics. This observation shows that
hydrodynamic interactions between powerful bacteria
cause cells to organize into large-scale coherent structures
despite surface screening.
Thiovulum majus, a sulfur-oxidizing bacteria, lives

within the diffusive boundary layer at the bottom of salt
marshes [34,35]. Competing diffusive gradients of sulfide,
from the mud, and oxygen, from the overlaying water
provide T. majus with an energy source [37]. To access this
energy faster than the diffusive flux, a cell attaches to a
surface and rotates hundreds of flagella to create a fluid
flow (Supplemental Video S1 [40]) that actively transports
oxygen and sulfide to the cell [5,41].
To understand the collective dynamics of these powerful

quickly rotating swimmers, we enriched cells from the
sulfidic mud of a salt marsh in Woods Hole, Massachusetts
(40° 310 33.3400 N 70° 400 6.1900 W). We placed 10 ml of
mud over a 10 ml sulfidic plug (1.5% agar with 10 mM
neutralized Na2S in modified artificial saltwater media
[5,42]) in a 125 ml serum bottle. To prevent mixing, we
poured a layer of silica sand over the inoculum. Finally, we
added 80 ml of modified artificial saltwater media and
sealed the serum bottle with a butyl stopper, which we
opened daily for approximately 1 min. After 14 days of
growth in room-temperature conditions, a visible layer of
T. majus called a veil [35] formed approximately 1 cm from
the water-air interface (Supplemental Material [40]). Using
a 1 ml pipette, we collected cells from the veil, which
regrew overnight. After one week, the veil was consumed
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by eukaryotes. So as to begin the experiment with free-
swimming cells, we lightly vortexed the cells to break them
from the veil and placed 65 μl of this homogenized material
into an observation chamber, constructed from a 330 μm
thick Thermo Scientific Gene Frame Seal (AB-0577)
between a glass slide and cover slip. The observations
herein described were made within the first hour after
inoculation. After approximately 2 h, the cells consumed
nearly all of the oxygen in the chamber and began to die.
As cells swim through the observation chamber, a

fraction swim either directly up, into the cover slip, or
straight down, into the microscope slide. Once a cell strikes
the glass surface, it rotates on its axis, creating a tornadolike
flow. Figures 1(a) and 1(b) show a schematic of this
behavior. Cells continue to move laterally over the glass
surface, indicating that they are not physically attached to
the glass but rather are dynamically bound [6,18,26,43–45]
to the surface by the fluid flow. Bound T. majus cells appear
on both the top and bottom surfaces. As shown in Figs. 1(c)
and 1(d), the flow around a rotating cell pulls a neighboring
cell towards and around it [6]. Remarkably, mutual attrac-
tion causes cells to self-assemble into constantly rotating
bacterial crystals composed of ∼10–1000 cells. Crystals
continue to form, reorganize, and move for approximately
2 h before the chamber becomes anoxic and cells begin to

slow and die. Figure 2 and Supplemental Videos S2–S5
[40] show several crystals. Figure 3(a) and Supplemental
Video S6 [40] show the evolution of a typical crystal
towards a stable rotating configuration. Low-Reynolds
number rotating crystals have no analogue in equilibrium
thermodynamics.
The geometric characteristics of these crystals are typical

of two-dimensional crystals; their dynamics are not.Because
cell size is monodisperse (diameter a ¼ 8.5� 0.5 μmmea-
sured from 100 cells), the attractive component of the
tornadolike flow [Fig. 1(b)] pulls neighboring cells together
into a hexagonal lattice. Given the typical swimming speed
U0 ∼ 500 μms−1 of free-swimming cells, we estimate the
force f0 ¼ 6πμU0 ∼ 40 pN. The resulting crystals are
faceted and show lattice vacancies (e.g., Fig. 2) but lack
dislocations and grain boundaries. The energy E ∼ af0 ∼
2 × 10−17 J required for a cell to escape is much larger than
the typical thermal energy kBT ¼ 4 × 10−21 J. Thus, cells
evaporate from the crystal as a result of perturbations that
rotate the flagella away from the surface, rather than
equilibrium detail balance. We therefore conclude that
crystals evolve due to the nonequilibrium flow of energy
from the individual rotating cell to the crystal.
Crystals rotate as each cell is entrained by the rotation

of its neighbors. We measure the angular velocity of the
N ¼ 16 rotating cell in 1700 frames of the crystal shown in
Fig. 3(a) by manually following the progression of surface
features on each cell. Including both the large cell-cell
variability and the smaller temporal variation, 95% of cells
rotate with angular velocity between 5 and 96 s−1 with
mean Ω0 ¼ 47 s−1 (corresponding to a torque l0 ¼
πμa3Ω0 ∼ 90 pN μm). We suggest that this large variability
arises from differences between internal energy stores.
Cells gain energy by oxidizing internal sulfur stores with
oxygen [35]. Thus, variability in rotation rate may be
correlated with differences in the internal concentration of
sulfur. Future work, examining the rotation of individual
cells, will seek to resolve the origin of this large variability.

(a) (c)

(d)

(b)

FIG. 1 (color online). Bacterial crystal formation. (a) In the
observation chamber, free-swimming cells from the front [37]
collide with both the top and bottom surfaces. (b) Schematic
showing the flow of water around a spherical cell due to a rotating
flagellum (sinusoidal gray curve). Actual T. majus cells are
covered with many flagella. Red curves show flagellar rotation
and resulting cell counterrotation. Blue curves show flow stream
lines. Black arrows show the component of the flow parallel to the
surface at a height of one cell radius. The flow field is found by
numerically integrating the Stokes equations [46] around a sphere
on a fixed surface using FREEFEM++ [47]. The flagella is
approximated as a combination of a Stokeslet and a rotlet
[46]. (c),(d) This flow pulls two cells over the glass surface into
one another. After colliding, the pair rotate around one another.
Cell rotation as imaged by the camera depends on the orientation
of the surface relative to the camera. For clarity, we have shown
cells rotating in the positive sense. Supplemental Videos S2–S8
[40] provide the raw videos.

FIG. 2. A large bacterial crystal in dark-field illumination. The
bright glow of individual cells results from light scattering off
intercellular sulfur globules [37]. The illumination of cells differs
because the concentration of sulfur globules varies between cells.
The scale bar is 10 μm.
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There is no significant change in rotation speed as a cell
changes its position in the crystal, implying rotating cells
are not slowed substantially by neighbors.
Consider the forces and torques a cell exerts on its

neighbors. Each cell exerts a force f0 ∼ 40 pN and two
torques, each of magnitude l0 ∼ 90 pN μm corresponding
to the counterrotating cell body and flagella. Given a fluid
of viscosity μ, the attractive flow very close to the cell
ua ∼ f0=μr [46] around one cell is much greater than the
rotational flow [46] ur ∼ l0a=μr3 at distances greater than
r ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l0a=f0
p

≈ 3 μm. Thus, the tornadolike flow shown in
Fig. 1 causes each cell to attract each other cell and rotate
about its immediate neighbors.
Mutual attraction pulls cells into a hexagonal lattice and

generates compressive stress through the crystal. The
typical time scale of this motion is determined by the
magnitude u0 of the attractive flow generated by a cell and
the drag experienced by a cell pulled over the stationary
chamber walls. For point particles in the absence of the
chamber walls, u0 ¼ f0=8πμa. Its value in the presence of
a surface and cells could be found by solving the Stokes
equations around every cell. Rather than doing so, we
simply keep u0 as an unknown coefficient, which, with the
cell size a, determines the typical time scale τ ¼ a=u0 of
these dynamics. τ ∼ 1 s determines the time scale over
which cells separated by one body length move together
[Figs. 1(c) and 1(d)].
A cell, at position Xi, pulls the surrounding fluid and

neighboring cells towards it with a flow that decays
asymptotically with distance r as ða=rÞ4 [46]. This flow

field represents the far-field flow towards a point force
oriented normal to a stationary surface. Close to the cell,
there are additional terms arising from both the finite cell
size and screening with the glass surface. We neglect these
terms to simplify the model while maintaining two impor-
tant characteristics. First, cell-cell attraction generates
compressive forces throughout the crystal. By neglecting
the small-scale flow structure, we systematically under-
estimate compressive forces. Second, because the far-field
flow is short range, these compressive forces remain
finite even in an infinite crystal. Thus, in both the real
system and the model, a sufficiently large shear causes an
infinite crystal to “melt.” On small scales, of order a,
steric interactions balance compression. We approximate
the steric interactions as short-range repulsive force
∼ða=rÞ12. Combining these effects, the flow field Uij pulls
the ith cell towards the jth cell with a force β0UijðrijÞ ¼
−u0β0ð∥rij∥−5 − ∥rij∥−13Þrij, where rij ¼ ðXi − XjÞ=a and
β0 is a drag coefficient.
When mutual attraction pulls cells close together, shear

generated between rotating cells becomes important.
Figures 3(b)–3(d) and Supplemental Video S7 [40] show
cell rotation and the resulting rearrangement of the lattice.
As a cell spins, it creates a rotating flow that pushes
neighboring cells perpendicular to the attractive force.
Because steric interactions, which resist radial compression
of the crystal, cannot balance this force, the crystal must
move. The power generated by rotating cells is dissipated
by fluid motion in the gap between cells and stationary
chamber walls and in the far field. The force F between
rotating cells is orthogonal to their displacement and
proportional to the velocity difference between cells.
Thus, F ¼ β1ðX1 − XjÞ × ðΩ1 þΩjÞ, where Ωj is the
angular velocity of the jth cell and ∥X1 − Xj∥ ¼ a.
The combined normal and tangential forces on an

axisymmetric cell balance dissipation as the cell moves
through the fluid. Equating these forces and nondimen-
sionalizing [6] and [40],

∂xi
∂t ¼ γ

X

j

Cijðxi−xjÞ× ðωiþωjÞþ
X

j≠i
uijðxi−xjÞ; ð1Þ

where xi ¼ Xi=a,ωj ¼ Ωj=Ω0, uij ¼ ðτ=aÞUij, andCij ¼ 1
if cells i and j are neighbors and is otherwise zero. The
parameter γ ¼ ðβ1aΩ0=β0u0Þ gives the ratio of shear to
compressive forces in the crystal. It should be noted that
there is an additional force and torque acting on a chiral
cell. Because the body of a T. majus cell is very nearly
spherical [37], the influence of these terms is small.
A generalization of Eq. (1) that includes these terms and
the torque a rotating cell exerts on its neighbors is provided
in Supplemental Material [40]. In the continuum limit, this
equation may be approximated as an active chiral film [48].
The single model parameter γ—which can be calculated

from the flow around rotating spheres [6]—is proportional
to Ω0. When γ is small, compression dominates and

FIG. 3. Crystal dynamics. (a) A crystal converges to a stable
rotating configuration. Solid black lines connect adjacent cells.
The dashed line shows the trajectory of the crystal over the glass
slide as a result of the flow created by a very large neighboring
crystal (not shown). (b)–(d) Cells, in a neighboring crystal, rotate
in the same direction (white arrows). The resulting shear moves
cells past one another, temporarily destroying the hexagonal
packing. The circle marker highlights one surface feature on a cell
to show the cell rotation. Supplemental Material S6 and S7 [40]
provide videos.
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jammed cells rotate as a crystal. As γ grows, greater shear
stress causes the crystal to rotate quickly. At a critical value
γ ¼ γc, cells begin to move past one another, melting the
crystal. Figure 4 shows that the numerically integrated
equations of motion for γ < γc resemble the observed
motion of the cells.
To understand crystal rotation, consider the example

shown in the inset in Fig. 4(g). The component of the force
resulting from cell rotation (red arrows) is illustrated with
black arrows. Notice that there is no net force on the center
cell. This force balance holds for any cell with symmet-
rically distributed neighbors. In general, only cells on the
crystal boundary or along certain topological defects exert a
net rotational force on the crystal. Given the shear stress γ
in a crystal of N cells, there is a rotational force nγ

ffiffiffiffi

N
p

on
the crystal perimeter, where n ¼ 4 is the typical magnitude
of Cij on the crystal edge. The resulting dimensionless
torque L ∼ nγ

ffiffiffiffi

N
p

R, where the radius of gyration R ∼
ffiffiffiffi

N
p

.
This torque is balanced as the crystal rotates with angular
velocity Ωc, dragging each cell past the glass surface. The
resulting viscous torque Lv ∼ΩcR4. Balancing these con-
tributions, the period of rotation T ¼ cðnγÞ−1N, where c is
a geometric scale factor assumed to be of the order of one.
Fitting the proportionality constant, we find τcðnγÞ−1 ¼
9.8� 1.5 × 10−2 s, corresponding to a value of γ of the
order of 1. Thus we find shear and compressive forces to be
of similar magnitude. This estimate is qualitatively con-
sistent with the observation of both stable rotating crystals
and rearrangements of cells in the lattice. If either normal or
shear forces dominated, one would observe either com-
pletely rigid crystals or continuously deforming amorphous
aggregates.
Supplemental Video S2 [40] shows that crystal bounda-

ries are poorly crystallized, similar to surface melting [49].
Consider the forces acting on a cell resting on an otherwise
straight facet of a semi-infinite crystal. A force balance
shows (Supplemental Material [40]) that Eq. (1) undergoes

a bifurcation at a critical value γsc ≈ 4.3. If γ < γsc, com-
pressive forces hold the cell in place. Above the bifurcation
point, tangential forces push the cell continuously over the
surface. Note that this value of γsc depends explicitly on
approximated flow field uij and is therefore an under-
estimate of the true value. This stability criterion is similar
to Coulomb failure. Unlike granular cases, both shear and
compression of bacterial crystals are generated internally.
Some small crystals (Fig. 2 and Supplemental Videos S3,

S6, and S8 [40]) sporadically move between different
hexagonal packings or display periodic motion. The
stability of these small crystals is strongly influenced by
finite size effects, determined by the size and shape of
the crystal. Because a given number of cells can be
arranged into many different hexagonal packings, there
are typically many stable cell configurations, which melt at
a slightly different value of γ. Notably, crystal stability
depends discontinuously on the number of cells. For
example, crystals composed of a Hex number [50] (N ¼
1; 7; 19; 37;…) of cells can form a very stable hexagon,
which is destabilized if just one cell is added (Supplemental
Video S9 [40]) or removed (Supplemental Video S10 [40]).
This reasoning leads us to conjecture that random fluctua-
tions in ω, and thus in γ, drive bacterial crystals between
different stable crystalline arrangements.
Once a crystal becomes unstable, each of the N cells

moves with approximately two degrees of freedom through
a high-dimensional space of possible configurations. Fixed
points represent configurations that rotate without rear-
rangement. Figure 3(a) and Supplemental Video S6 [40]
show that the processes of evaporation and rearrangement
cause a crystal to converge to a stable fixed point. To gain
intuition for these high-dimensional dynamics, it is useful
to consider crystal evolution as γ is temporarily increased
(Supplemental Video S11 [40]). At low γ, compression
dominates so that nearly any hexagonal packing is stable.
As γ increases, the system moves through a bifurcation
point at which one rotating configuration becomes unstable
and disappears. At this point, shear forces overwhelm
compression and cells begin to reorganize. The melt moves
deterministically through configuration space towards one
of the remaining stable fixed points, where it recrystallizes.
As γ decreases to its initial value, the crystal remains in the
new configuration. Notably, at high γ, there are not just
fixed points, but also periodic cycles of unstable configu-
rations (Supplemental Videos S9 and S10 [40]).
Active bacterial crystals have not been previously

observed. We now outline the characteristics of T. majus
that make crystal formation possible. This process occurs in
two steps. First, a cell collides with a chamber wall and
exerts a force normal to the surface. We conjecture that the
stability of this fixed point is due in large part to mechanical
interactions with the surface. If the flagella are not normal
to the surface, there is a tangential force that pushes the cell
laterally over the surface. Friction with the surface slows

(a) (b) (c) (g)

(d) (e) (f)

FIG. 4 (color online). Crystals rotate as power generated by
cells is dissipated on the scale of the crystal. (a)–(c) A single
crystal composed of eight cells rotates. Images are separated by
0.17 s. Scale bars are 5 μm. (d)–(f) Numeric integration of Eq. (1)
reproduces crystal rotation. (g) The period of rotation is roughly
proportional (black line) to crystal size. Error bars show the data
spread between three measurements. (Inset) As each cell rotates
(red arrow), it pulls its neighbors in the direction of rotation,
causing the crystal to rotate.
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the cell at the point of contact, thus exerting a torque that
rights the cell. In the second step of crystal formation, the
bound cell attracts neighboring cells. Given an attractive
flow ∼u0ða=rÞ4 between cells on a surface with density σ,
crystals form at a rate k ¼ a4u0σ5=2. Because T. majus is
larger than E. coli by a factor of 8 and an order of
magnitude faster, T. majus cells aggregate into crystals
∼104 times faster than could E. coli at the same density.
Moreover, because T. majus does not display run-and-
tumble chemotaxis, the time scale τs over which the cell
remains stable is not determined by tumbling. Combining
these time scales, we find that bacteria organize into
crystals only if τsa4u0σ5=2 ≫ 1. Thus we conclude that
T. majus form crystals because of their large size, fast
swimming speed, and lack of run-and-tumble chemotaxis.
Future studies should extend these results in four

directions. First, one should include the dynamics by which
crystals capture free-swimming cells and bound cells
evaporate. Second, one should vary γ. To do so, we propose
growing bacterial crystals at the water-air interface, where
cells can move more freely. Next, one should investigate
the dynamics of single cells to understand the large
variability in the angular velocity of rotating cells.
Finally, future work should seek to understand how the
relatively short flagella [34] of T. majus generate the large
force necessary to attract nutrients [41] in nature and to
form these crystals of microscopic tornadoes in the lab.
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