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Biomolecular systems like molecular motors or pumps, transcription and translation machinery, and
other enzymatic reactions, can be described as Markov processes on a suitable network. We show quite
generally that, in a steady state, the dispersion of observables, like the number of consumed or produced
molecules or the number of steps of a motor, is constrained by the thermodynamic cost of generating it. An
uncertainty ϵ requires at least a cost of 2kBT=ϵ2 independent of the time required to generate the output.
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Biomolecular processes are generally out of equilibrium
and dissipative, with the associated free energy consump-
tion coming most commonly from adenosine triphosphate
(ATP) hydrolysis. The role of energy dissipation in a
variety of processes related to biological information
processing has received much attention recently [1–14],
to give just one class of examples for which one tries to
uncover fundamental limits involving energy dissipation in
biomolecular systems.
Chemical reactions catalyzed by enzymes are of central

importance for many cellular processes. Prominent exam-
ples are molecular motors [15–19], which convert chemical
free energy from ATP into mechanical work. In this case,
an observable of interest is the number of steps the motor
made. Another commonly analyzed output in enzymatic
kinetics is the number of product molecules generated by
an enzymatic reaction, for which the Michaelis-Menten
scheme provides a paradigmatic case [2].
Quite generally, chemical reactions are well described

by stochastic processes. An observable, like the rate of
consumed substrate molecules or the number of steps of a
motor on a track, is a random variable subjected to thermal
fluctuations. Single molecule experiments [20–24] provide
detailed quantitative data on such random quantities.
Obtaining information about the underlying chemical
reaction scheme through the measurement of fluctuations
constitutes a field called statistical kinetics [25–28].
A central result in this field is the fact that the Fano factor
quantifying fluctuations provides a lower bound on the
number of states involved in an enzymatic cycle [15,28].
For a nonzero mean output, the chemical potential

difference (or affinity) driving an enzymatic reaction must
also be nonzero, leading to a free energy cost. Is there
a fundamental relation between the relative uncertainty
associated with the observable quantifying the output and
the free energy cost of sustaining the biomolecular process
generating it?
In this Letter, we show that such a general bound does,

indeed, exist. Specifically, for any process running for a
time t, we show that the product of the average dissipated

heat and the square of the relative uncertainty of a generic
observable is independent of t and bounded by 2kBT.
This uncertainty relation is valid for general networks and
can be proved within linear response theory. Beyond linear
response theory, we show it analytically for unicyclic
networks and verify it numerically for several multicyclic
networks. As an illustration of a specific consequence of
our results, we obtain a new bound on the Fano factor for
unicyclic networks which depends on the affinity driving
the process.
The observables we consider here arise from counting

the number of transitions between states, which is different
from a random variable counting the fraction of time spent
in a state. For this latter quantity, the relative uncertainty is
finite even in equilibrium, as is the case of a cell estimating
the concentration of an external environment by counting
the fraction of time receptors are bound [29,30]. The role
of dissipation for this problem has been recently studied
in [5,13].
Our main result can be introduced using, arguably, the

simplest example of a nonequilibrium chemical reaction
catalyzed by an enzyme, which is a biased random walk
where a single step is interpreted as the completion of an
enzymatic cycle. Steps to the right happen with a rate kþ,
those to the left with a rate k−. After a time t, on average,
hXi ¼ ðkþ − k−Þt steps have occurred, with the number
of steps X corresponding to the observable of interest.
Specific realizations of this random process show a
variance hðX − hXiÞ2i ¼ ðkþ þ k−Þt [31]. The squared
relative uncertainty of the observable is

ϵ2 ≡ ðhX2i − hXi2Þ=hXi2 ¼ ðkþ þ k−Þ=½ðkþ − k−Þ2t�:
ð1Þ

Assuming an external environment of fixed temperature T,
the transition rates are given by the local detailed balance
relation

kþ=k− ¼ expðA=kBTÞ; ð2Þ
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where A is the affinity driving the process and kB
Boltzmann’s constant. The thermodynamic cost of gener-
ating this output is given by the entropy production rate,
which reads [32]

σ ¼ ðkþ − k−ÞA=T; ð3Þ
leading to a total dissipation after time t of Tσt. In
equilibrium, i.e., for kþ ¼ k−, there is no dissipation and
the uncertainty ϵ diverges.
The trade-off between precision and dissipation is

captured by the crucial product Q of total dissipation
and the square of the relative uncertainty,

Q≡ Tσtϵ2 ¼ A coth½A=ð2kBTÞ� ≥ 2kBT; ð4Þ
where we used Eqs. (1), (2), and (3). This thermodynamic
uncertainty relation shows that a more precise output
requires a higher thermodynamic cost independent of the
time used to produce the output. Reaching an uncertainty
of, e.g., one percent requires at least 20 000kBT of free
energy. Since Q is an increasing function of the affinity A,
the minimal cost for a given uncertainty is achieved close to
equilibrium, i.e., forA → 0. In this limit, however, the time
t required for producing a substantial output hXi diverges.
In the following, we show that this uncertainty relation,

namely, that the dissipation of a process that leads to an
uncertainty ϵ must be at least 2kBT=ϵ2, is quite general,
holding true for arbitrary networks of states. First, we prove
Q ≥ 2kBT for any network within linear response theory.
For a unicyclic network, we show analytically that the
bound also holds true beyond linear response. For multi-
cyclic networks beyond the linear response regime, we
provide numerical evidence for this bound. From now on,
to keep notation slim, we set kB ¼ T ¼ 1, which renders
entropy and energy dimensionless.
We consider a general Markov process with transition rate

from state i to j denoted by kij. Thermodynamic consistency
requires that if kij ≠ 0 then kji ≠ 0. Furthermore, we assume
a finite number of states N and denote the stationary
probability of state i by Pi.
The observable of interest Xα represents some physical

quantity that changes if certain transitions in the network of
states occur. Specifically, the generalized distance dαij deter-
mines howmuch the variableXα changes if the transition i to
j happens. As an example, if Xα counts the number of
consumed ATP molecules, and if state i represents a free
enzyme and j an enzyme with ATP bound to it, then dαij ¼ 1

and dαji ¼ −1. This generalized distance is always antisym-
metric in i and j.
The affinity associated with the variable Xα is denoted

Aα. For example, if Xα is the number of consumed
substrate molecules (like ATP) in a chemical reaction,
then Aα is the chemical potential difference driving this
reaction. The transition rates fulfill the generalized detailed
balance relation [32]

lnðkij=kjiÞ ¼
X
β

dβijAβ þ Ei − Ej; ð5Þ

where this sum is over all affinities Aβ, including the case
β ¼ α, and Ei is the equilibrium free energy of state i.
In the stationary state, the velocity (or probability

current) and diffusion constant associated with Xα are
defined as

Jα ≡ hXαi=t; ð6Þ

and

Dα ≡ ½hX2
αi − hXαi2�=ð2tÞ; ð7Þ

respectively. The squared relative uncertainty then reads

ϵ2α ≡ ½hX2
αi − hXαi2�=hXαi2 ¼ 2Dα=ðJ2αtÞ: ð8Þ

While the probability current has a simple form in terms
of the stationary probability distribution, namely, Jα ¼P

ijd
α
ijðPikij − PjkjiÞ, a general formula for the diffusion

constant is more involved and will be discussed below. The
entropy production rate is [32]

σ ¼
X
β

JβAβ; ð9Þ

where β runs over all affinities. For example, for a
molecular motor this sum has two terms: one affinity is
the chemical potential difference driving the motor with the
rate of ATP consumption as the associated current, the other
affinity is the mechanical force, and the respective current is
the velocity of the motor. The (dimensionless) product (4)
for a general network is then defined as

Qα ≡ σtϵ2α ¼ 2σDα=J2α: ð10Þ

Within linear response theory [32], which is valid close
to equilibrium where the affinities Aβ are small, a current
can be expressed by the affinities as

Jβ ¼
X
γ

LβγAγ; ð11Þ

where the Onsager coefficients are defined as

Lγβ ≡ ∂Aγ
JβjA¼0

¼ Lβγ: ð12Þ

From Eqs. (9) and (11), the entropy production within
linear response reads σ ¼ P

β;γLβγAγAβ. Moreover, the
diffusion constant is given by the Einstein relation
Dα ¼ Lαα [33], which from Eq. (8), leads to ϵ−1α being
linear in the affinities. Hence, Eq. (10) becomes
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Qα ¼ 2

P
β;γLααLβγAβAγP
β;γLαβLαγAβAγ

¼ 2

�
1þ

P
β;γ≠αGβγAβAγ

ðJαÞ2
�
;

ð13Þ

where Gβγ ≡ ðLααLβγ − LαβLαγÞ. Using the fact that the
Onsager matrix L is positive semidefinite, it is possible to
prove that G is also a positive semidefinite matrix [34].
Hence, we have established Qα ≥ 2 within linear response
theory. Note that equality is reached in the case of only one
nonzero affinity, i.e., Aβ ¼ 0 for β ≠ α.
In the calculations that follow, we use elegant expres-

sions obtained by Koza [36,37] for the velocity and
diffusion coefficient, which are valid for a general network
of states. For these expressions, we need a modified
generator associated with Xα, which is a N-dimensional
square matrix with elements [38]

½LαðzÞ�ij ¼
8<
:

kij expðzdαijÞ if i ≠ j

−
P
j
kij if i ¼ j : ð14Þ

A set of coefficients CnðzÞ is defined through the character-
istic polynomial of this matrix as

det ½yI − LαðzÞ�≡XN
n¼0

CnðzÞyn; ð15Þ

where I represents the identity matrix. Using these coef-
ficients, which are functions of the transition rates, the
current and diffusion coefficient can be written as [36]

Jα ¼ −C0
0=C1; ð16Þ

and

Dα ¼ −ðC00
0 þ 2C0

1Jα þ 2C2J2αÞ=ð2C1Þ; ð17Þ

where Cn ≡ Cnð0Þ and the primes denote derivatives with
respect to z taken at z ¼ 0. A full derivation for these
expressions is given in [34].
We first consider an arbitrary unicyclic model with N

states [39]. The transition rate from state n to state nþ 1
(n − 1) is denoted kþn ðk−n Þ, where n ¼ 0; 1;…; N − 1. The
output X counts the number of completed cycles. It is
sufficient to count the number of transitions through one
of the links in the cycle, which we choose to be the link
between states 0 and 1. The generalized distance associated
with X is then d01 ¼ −d10 ¼ 1 and dij ¼ 0 for ij ≠ 01.
The cycle affinity is

A ¼ lnðΓþ=Γ−Þ; ð18Þ

where Γþ ≡Q
N−1
i¼0 kþi and Γ− ≡Q

N−1
i¼0 k−i . An example of

such a unicyclic machine with N ¼ 3 is an enzyme E that
consumes ATP according to the scheme

EþATP⇌
kþ
0

k−
1

ET⇌
kþ
1

k−
2

EDþPi⇌
kþ
2

k−
0

EþADPþPi; ð19Þ

where ADP stands for adenosine diphosphate, Pi for
phosphate, ET (ED) represents the enzyme with an ATP
(ADP) bound to it. In this case, the variable X is the number
of consumed ATP molecules and the affinity is given by the
chemical potential difference A ¼ μATP − μADP − μP.
We can show that, for a given number of states N and

affinity A, the product Q reaches its minimal value for
uniform rates, i.e., kþi ¼ ðΓþÞ1=N and k−i ¼ ðΓ−Þ1=N inde-
pendent of i, leading to the bound [34]

Q ≥ ðA=NÞ coth½A=ð2NÞ� ≥ 2; ð20Þ

which is in agreement with Eq. (4) that corresponds to
N ¼ 1. The bound (20) gives the minimal dissipation
required to realize an uncertainty ϵ for given affinity A
and number of states N. This bound is an increasing
function of A; hence, Q is minimal for A → 0 where
Q → 2. A related quantity, defined as the ratio of a
“barometric” force and an “Einstein” force, has been
considered in [40], where a bound similar to Q ≥ 2 has
been shown to hold for the case N ¼ 2 within a calculation
keeping terms up to second order in the affinity A.
We now turn to a specific example showing how this new

constraint involving fluctuations and energetic cost can be
turned into a diagnostic tool to unveil a structural property
of an enzymatic cycle. A quantity closely related to the
relative uncertainty is the Fano factor

F≡ ½hX2i − hXi2�=hXi ¼ 2D=J; ð21Þ

which gives a measure of the dispersion associated with X,
where X counts the output of an enzymatic cycle. For
unicyclic networks, this Fano factor is known to be
bounded from below by 1=N [15,28]. Measurements of
the Fano factor can then be used to obtain a bound on the
number of states of an underlying enzymatic cycle [28].
Our new bound (20) implies

F ¼ Q=A ≥ ð1=NÞ coth½A=ð2NÞ�: ð22Þ

For a diverging affinity, which is the case in chemical
reaction schemes where at least one backward transition
rate is assumed to be zero, this bound becomes the known
one F ≥ 1=N. For experiments where substrate and product
concentrations are kept fixed and, consequently, the value
of the affinity is known, as for example in [41], our stronger
bound in Eq. (22) constrains, even further, the number of
states in such an enzymatic cycle.
Let us turn again to multicyclic networks. Within the

linear response regime, we have established above [after
Eq. (13)] thatQα reaches the bound 2 for the case where all
affinities but Aα are zero. For unicyclic networks, which is

PRL 114, 158101 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

17 APRIL 2015

158101-3



the paradigmatic case for a system with one affinity, we
have proved that the bound holds arbitrarily far from
equilibrium, being reached only in the linear response
regime. In order to provide full evidence that our main
result Qα ≥ 2 is, indeed, universal, we now analyze
multicyclic networks beyond linear response. In this case,
we have to take specific systems. As a first example, we
consider a model with an enzyme E that can consume two
different substrates S1 and S2 and generates product P, see
Fig. 1. Two enzymatic cycles of this model are

Eþ S1⇌
k12

k21
ES1⇌

k24

k42
EP⇌

k41

k14
Eþ P;

Eþ S2⇌
k13

k31
ES2⇌

k34

k43
EP⇌

k41

k14
Eþ P; ð23Þ

where the enzyme states are identified as E ≙ 1,
ES1 ≙ 2, ES2 ≙ 3, and EP ≙ 4. The affinity of the cycle
involving substrate S1 (S2) is given by the chemical
potential difference A1 ¼ μ1 − μP (A2 ¼ μ2 − μP). The
relations between these affinities and the transition rates
are A1¼ln½k12k24k41=ðk21k42k14Þ� and A2¼ln½k13k34k41=
ðk31k43k14Þ�. There is also a third cycle 1 → 2 → 4 →
3 → 1, in which an S1 is consumed and an S2 produced. Its
affinity is not independent but rather given by A1 −A2.
The average rate at which S1 molecules are consumed is

given by the current J1 ≡ P1k12 − P2k21, while the rate of
S2 consumption is J2 ≡ P1k13 − P3k31. The entropy pro-
duction can be conveniently written as a sum over terms
which are the product of a cycle affinity and a current [32].
For the present model, it becomes

σ ¼ A1J1 þA2J2: ð24Þ

As an observable of interest, we choose the number of
consumed S1 molecules, for which we can calculate the
associated product Q1 with formulas (10), (16), (17),
and (24). The resulting function of the ten transition rates
is too cumbersome to show. Both by minimizing this
function numerically and by evaluating it for randomly

chosen transition rates, we find that the uncertainty relation
Q1 ≥ 2 is respected. In order to verify whether this result
is particular to this network topology we have analyzed
six other multicyclic networks, which do not share any
particular symmetry [34]. For all these networks, our
uncertainty relationQα ≥ 2 is fulfilled. In all cases numeri-
cal minimization of Qα leads to a minimum compatible
with 2 that is reached in the linear response regime. Based
on these results, we conjecture thatQα ≥ 2 also for general
multicyclic networks beyond linear response.
In conclusion, for nonequilibrium stationary states, we

have conjectured the fundamental limit 2kBT=ϵ2 on the
minimal dissipation required to generate an output with
small relative uncertainty ϵ. This bound can be saturated
close to equilibrium with only one independent affinity
driving the process. This uncertainty relation provides a
universal link between the “precision” of a molecular
machine and the cost of maintaining it. As one specific
application, we have shown how a bound on the number of
states involved in the enzymatic cycle related to the Fano
factor can be improved provided the affinity is known.
More broadly, one can expect similar signatures of our
fundamental relation quantifying the minimal energetic
cost for reaching small uncertainty, i.e., high precision, to
show up in any biochemical or biophysical process at fixed
temperature that can be described by a Markov network
[42]. Exploring whether and how this balance between
fluctuations and energetics has guided the evolution of
chemical reaction networks in living systems constitutes
one intriguing perspective of our approach. Our funda-
mental relationship between minimal dissipated heat and
uncertainty is based, first, on exact results in the linear
response regime. Second, we have proved it for unicyclic
networks arbitrarily far from equilibrium. Third, for multi-
cyclic networks far from equilibrium, we have numerical
evidence for several different networks. We could not
provide a formal proof for arbitrary networks, and we
expect that the method used for unicyclic networks cannot
be generalized to multicyclic networks, as it requires an
expression for the diffusion coefficient in terms of the
transition rates.
On the technical level, investigating possible general-

izations of the affinity dependent bound on the Fano factor
in Eq. (22) to multicyclic networks could lead to further
new bounds in statistical kinetics. Likewise, it would be
interesting to explore whether one can derive bounds
involving higher order cumulants. Finally, we emphasize
that an algebraic proof of the uncertainty relation in the
multicyclic case beyond the linear response regime looks
like a serious challenge.
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