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A Fermi liquid with spin-orbit coupling (SOC) is expected to support a new set of collective modes:
oscillations of magnetization in the absence of the magnetic field. We show that these modes are damped by
the electron-electron interaction even in the limit of an infinitely long wavelength (q ¼ 0). The linewidth of
the collective mode is on the order of Δ̄2=EF, where Δ̄ is a characteristic spin-orbit energy splitting and EF

is the Fermi energy. Such damping is in stark contrast to known damping mechanisms of both charge and
spin collective modes in the absence of SOC, all of which disappear at q ¼ 0, and arises because none of
the components of total spin is conserved in the presence of SOC.
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Electron systems with spin-orbit coupling (SOC) exhibit
rich physics, some of which may have technological
applications; [1,2] equally rich is the physics of cold-atom
systems with synthetic SOC [3,4]. Combining many-body
interactions with broken SU(2) symmetry, one obtains a
special—“chiral”—kind of Fermi liquid (FL) [5–7] that
supports a new set of collective modes, the “chiral-spin
waves”—oscillations of the spin density in zero magnetic
field [8–11].
In the absence of SOC, electron-electron interaction (eei)

[12] does not affect certain properties of an electron system
given that some symmetries are preserved. For example,
the conductivity and cyclotron-resonance frequency of a
Galilean-invariant system are not affected by eei; the same
is true for the de Haas–van Alphen (dHvA) frequency in
an isotropic system [13] and for the Larmor frequency in
the presence of an SU(2)-symmetric interaction. Being a
relativistic effect, SOC breaks both Galilean (but not
necessarily rotational) invariance and SU(2) symmetry
and thus lifts the protection ensured by these symmetries.
As a result, several physical quantities become dependent
on eei, such as the optical conductivity [16], Drude weight
[17], and frequencies of collective spin modes, which play
the role of Larmor frequencies in zero magnetic field
[8–11].
In this Letter, we discuss another fundamentally new

effect induced solely by SOC: intrinsic damping of col-
lective spin modes in the uniform (q ¼ 0) limit. Interaction-
induced damping of collective modes is not, by itself, a
new effect. For example, plasmons in 3D [18], 2D [19],
and 1D (Ref. [20]) electron systems, the Silin-Leggett
(SL) mode [21,22] in a partially spin-polarized FL [23,24],
and magnons in a ferromagnetic FL [24,25] are all
damped by interaction processes involving excitations of
multiple particle-hole pairs. (This mechanism is different
from Landau damping which involves only a single

particle-hole pair. Damping by multiple pairs occurs even
outside the single-particle continuum; its effect on absorp-
tion was studied in Refs. [16] and [19] within the Fermi
golden rule.) However, Galilean invariance, in the case of
charge modes [26], and conservation of the total spin
component along the field (S3), in the case of spin modes
[27], ensure that this kind of damping vanishes at q ¼ 0.
We show here that this is not the case for electron systems
with SOC.
Two-dimensional (2D) electron systems with momen-

tum-dependent SOC, e.g., of Rashba or Dresselhaus types,
bear a certain similarity to a partially spin-polarized
FL. The latter has a transverse SL mode in the spin sector
(see Fig. 1, left) [21,22], while the former has three (two
transverse and one longitudinal) chiral-spin modes
(Ω1…Ω3 in Fig. 1, right) [8–11], which correspond to
oscillations of the three components of magnetization.
Indices 1–3 label the Cartesian system with the 3 axis
along the normal to the plane of a 2D electron gas.
(Although the SL mode has been studied previously in

FIG. 1 (color online). Left: The Silin-Leggett mode in a
partially spin-polarized FL. Right: The chiral-spin modes in a
FL with Rashba spin-orbit coupling. The shaded regions denote
the particle-hole continua, ΔB is the Larmor frequency, ~ΔB is the
quasiparticle Zeeman energy, and ΔminðmaxÞ is the lower (upper)
boundary of the continuum at q ¼ 0.
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3D, the same mode should occur in 2D as well.)
Conservation of S3 ensures that the frequency of the SL
mode at q ¼ 0 coincides with the Larmor frequency in
the absence of eei. In the presence of SOC, none of the
three spin components is conserved. As a result, one
obtains three distinct modes with frequencies renormalized
by eei. In addition, as we show here, these modes have
finite linewidth which, in order of magnitude, is given by
the inverse transport lifetime of a quasiparticle with energy
equal to the spin-orbit splitting. That the SL mode at
q ¼ 0 is not affected by eei follows already from the
exact equations of motion for magnetization [23].
Diagrammatically, this occurs due to a cancellation
between the self-energy and vertex graphs for the spin
susceptibility [23]. Such a cancellation, however, does not
occur in the presence of SOC.
The single-particle Hamiltonian of a 2D system with

SOC can be written as (we set ℏ ¼ 1)

Hk ¼
�
k2

2m
− μ

�
σ0 þ λ~σ · ~fð~kÞ; ð1Þ

where μ is the chemical potential, σ0 is the 2 × 2 unit
matrix, ~σ is the three-dimensional vector of Pauli matrices,

λ is the SOC constant, and ~fð~kÞ ¼ −~fð−~kÞ is a 2D vector

that depends on the details of SOC; e.g., ~f ¼ ðk2;−k1; 0Þ
for linear Rashba SOC. The single-particle Green’s func-
tion is given by

GðKÞ ¼
X
s

Ωsð~kÞgsðKÞ; Ωsð~kÞ ¼
1

2
½σ0 þ sη̂~k�; ð2Þ

where gsðKÞ¼ðik0−ðk2=2mÞ−sΔ~k=2þμÞ−1,K ≡ ðik0; ~kÞ,
s ¼ �1 labels either spin projection or chirality, η̂~k ≡
~σ · ~f=j~fj, and Δ~k ¼ 2λj~fj is the spin-orbit splitting which,
in general, depends not only on themagnitude but also on the

direction of ~k. We will be primarily interested in the case of

weak SOC, when Δ~k ≪ EF for any ~k. In what follows, we
will be comparing the Ω3 chiral-spin mode to
the (2D) SL mode, as both modes are transverse to the
SOC-induced or Zeeman magnetic field, correspondingly.
The latter can be described by the same Hamiltonian with
~f ¼ ð0; 0;ΔB=2λÞ, where ΔB ≡ gμBB, g is the effective g
factor, μB is the Bohr magneton, and ~B is the magnetic field
chosen to be along the 3 direction. The orbital effect of the
field is not considered here.
Within the random phase approximation (RPA), the

spin susceptibility tensor is given by the ladder series in
Fig. 2, where the boxed wavy line is a short-range
interaction, Ux, which mimics the exchange interaction
in the spin channel. As shown in Ref. [11], the frequen-
cies of the collective modes correspond to the roots of

the equation Det½σ0 ⊗ σ0 þ ðUx=2ÞΠ0�, where the ele-
ments of the 4 × 4 spin-charge polarization matrix Π0

are given by

Π0
ijðQÞ ¼

Z
K
Tr½σiGðKÞσjGðK þQÞ�: ð3Þ

Here,
R
K ≡T

P
k0

R ðd2k=ð2πÞ2Þ, i; j ∈ 0; 1; 2; 3, and 0
corresponds to the charge component. At q ¼ 0, all
mixed spin-charge susceptibilities, Π0

0j with j ≠ 0, vanish
by charge conservation, while the matrix of spin suscep-
tibilities can always be transformed to a diagonal form. In
general, there are three spin modes, whose frequencies
are found from the equations 1þ δjUxΠ0

ii ¼ 0, with δ1 ¼
δ2 ¼ 1 and δ3 ¼ 1=2. The Green’s functions in Π0

ij contain
the self-energy parts. However, for the special case ofUx ¼
constant, they drop out (see below) and, after analytic
continuation (iq0 → Ωþ iδ), one obtains

Π0
33ðΩÞ ¼ 2ν

� Δ2
~kF

ðΩþ iδÞ2 − Δ2
~kF

�
FS

; ð4Þ

where we have already assumed that SOC is weak in the
sense specified above, ν is the density of states per spin
projection, h� � �i denotes averaging over the Fermi surface

(FS), ~kF ¼ kF~k=k, and kF is the Fermi momentum in
the absence of SOC. In general, Δ~k varies from Δmin to
Δmax along the FS. The continuum of inter-subband
particle-hole excitations, where ImΠ0

33 ≠ 0, is confined
to the interval Δmin ≤ Ω ≤ Δmax. At the boundaries of
the continuum, ReΠ0

33 has square root singularities [28],
which guarantee a solution of the eigenmode equation
1þ UxΠ0

33=2 ¼ 0 for Ω < Δmin even at weak coupling. If
SOC is isotropic, Δmin ¼ Δmax ≡ Δ, the two square-root
singularities merge into a single pole at Ω ¼ Δ, the
inter-subband continuum shrinks to a single point, and

FIG. 2. Top: The ladder (RPA) series for the spin susceptibility.
The boxed wavy line is the static effective interaction Ux.
Bottom: Diagrams contributing to damping of the collective
modes. The wavy line in diagrams (a)–(e) denotes a dynamic
interaction, VeffðPÞ.
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the mode frequency is given by Ω3 ¼ Δ
ffiffiffiffiffiffiffiffiffiffiffi
1 − u

p
, where

u≡Uxν[11].
Renormalization of the mode frequency by eei in the

SOC case and the lack of it thereof in the SL case is an
important difference, which we discuss now as it will help
us to understand the differences in damping later on. This
difference occurs because the Greens’ functions in the
RPA series in Fig. 1 include chirality- or spin-dependent
shifts in the chemical potential, which are given by the
momentum- and frequency-independent parts of the self-
energy. Each rung of the ladder diagram (Π0

ij) contains a
difference of the self-energies

δΣs ¼ Σs − Σ−s ¼ −Ux

X
s0

Z
P
ðBs;s0 − B−s;s0 Þgs0 ðPÞ; ð5Þ

where Bs;s0 is the matrix element for the transition s → s0.
Within a given rung, δΣs renormalizes the spin-splitting
perturbation, be it SOC or the magnetic field. Since s ¼ s0
in the SL case, the self-energy of an electron with given
spin is proportional to the number density of electrons with
the same spin. Hence, δΣs is proportional to magnetization
[δΣs ¼ suΔB=ð1 − uÞ], and each rung of the diagram
contains the renormalized Zeeman energy of a quasipar-
ticle, ~ΔB ¼ ΔB=ð1 − uÞ. The boundary of the continuum
at q ¼ 0 is shifted from ΔB to ~ΔB (cf. Fig. 1, left) as
can be seen, e.g., from the 11 component of the rung:
Π0

11ðΩÞ ¼ ν½2 ~Δ2
B=ðΩþ iδÞ2 − ~Δ2

B�. The Larmor theorem is
effected via a cancellation between the self-energy
and vertex contributions [23]: when the rung is substituted
into the eigenmode equation, the factor of 1 − u cancels
out and the frequency of the mode coincides with
bare ΔB.
The SOC case is different in that chirality, in contrast to

spin, is not conserved by eei, and the sum over s0 in Eq. (5)
contains both the s ¼ s0 and s0 ¼ −s terms. For
Ux ¼ const, this implies that the self-energy of an electron
with given chirality is proportional to the total number
density, and thus δΣs ¼ 0 [6]. The vertex part is, however,
nonzero. Therefore, there is no cancellation between the
self-energy and vertex contributions, and the frequencies of
the modes are renormalized by eei. If Ux ≠ const, one can
show [29,30] that δΣs does not contain the zeroth angular
harmonic of the interaction (which is why δΣs ¼ 0 for
Ux ¼ const), whereas the vertex contribution does. Thus,
there is no cancellation between the two contributions in
the general case as well.
Damping of collective modes in the region of frequencies

and momenta outside the single-particle continuum occurs
via generation of multiple particle-hole pairs, which
requires a dynamic interaction, e.g., a dynamically screened
Coulomb potential. The self-energy of collective modes
is depicted by diagrams (a)–(e) in Fig. 2. The same
set of diagrams has been encountered in the analysis of

various two-particle correlation functions in the case of an
RPA-type interaction [31–34]. Although the Aslamazov-
Larkin (AL) diagrams (d) and (e) contain two wavy lines,
they are of the same order in the bare coupling constant of
the theory (the electron charge in our case) as in diagrams
(a)–(c). However, the contribution of the AL diagrams to
damping vanishes within the approximations made in this
work, i.e., weak SOC and long-range interaction (see
below) [35,36].
In the case of the SL mode, renormalization of the

transverse spin susceptibility (χ⊥ ¼ hS−Sþi) by diagrams
(a)–(c) is given by δχ⊥ðQÞ ¼ −μ2BðΠa þ Πb þ ΠcÞ, where

Πa ¼
Z
K
½g2−ðKÞgþðK þQÞΣ−ðKÞ þ ðΔ~kF

→ −Δ~kF
Þ�;

Πb ¼
Z
K
½g2−ðK þQÞgþðKÞΣ−ðK þQÞ

þ ðΔ~kF
→ −Δ~kF

Þ�;

Πc ¼
Z
K

�
g−ðK þQÞgþðKÞ

iq0 þ ΔB
½ΣþðKÞ − Σ−ðK þQÞ�

þ ½Δ~kF
→ −Δ~kF

�
�
; ð6Þ

þð−Þ denotes up (down) spins, Q ¼ ðiq0; 0Þ,
Σ�ðKÞ ¼ −

R
P g�ðK þ PÞVeffðPÞ, and VeffðPÞ is some

dynamic interaction. In the last line of Eq. (6), we used
the identity

g�ðKþPþQÞg∓ðKþPÞ ¼ g�ðKþPÞ− g∓ðKþPþQÞ
iq0�ΔB

ð7Þ

and integrated over P. Because the denominator in Eq. (7)
does not depend on P, this last step produced the same self-
energies, Σ�, as in diagrams (a) and (b). Adding up the
three lines of Eq. (6), we arrive at

Πa þ Πb þ Πc ¼
2ΔB

q20 þ Δ2
B
ðAþ − A−Þ; ð8Þ

where A� ≡ R
K g2�ðKÞΣ�ðKÞ. Recalling that VeffðPÞ is real

on the Matsubara axis and changing the variables as
k0 → −k0 and p0 → −p0, we find that A� ¼ A�

�. Thus
the frequency-independent prefactor in Eq. (8), Aþ − A−,
is real. Continuing iq0 to the real axis, we see that the
imaginary part of δχ⊥ comes only from a resonance at
the bare Larmor frequency, Ω ¼ ΔB, which coincides
with the pole of χ⊥ in the RPA. The only effect of the
interaction processes represented by diagrams (a)–(c) is thus
to renormalize the amplitude of the SL mode without either
shifting its frequency or smearing it.
For the case of SOC, it is convenient to consider

renormalization of the out-of-plane spin susceptibility,
δχ33ðQÞ ¼ −μ2BðΠa þ Πb þ ΠcÞ, where now
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Πa ¼
Z
K

1

2
½g2−ðKÞgþðK þQÞfΣþ−ðKÞ þ Σ−þðKÞg þ g2þðKÞg−ðK þQÞfΣþþðKÞ þ Σ−−ðKÞg�;

Πb ¼
Z
K

1

2
½g2−ðK þQÞgþðKÞfΣþ−ðK þQÞ þ Σ−þðK þQÞg þ g2þðK þQÞg−ðKÞfΣþþðK þQÞ þ Σ−−ðK þQÞg�;

Πc ¼ −
Z
K

Z
P

1

2
VeffðPÞ

�
N −þMþ−−

iq0 þ Δ~kþ~p

þN þ−Mþ−þ
iq0 þ Δ~kþ~p

þN −þM−þþ
iq0 − Δ~kþ~p

þN þ−M−þ−

iq0 − Δ~kþ~p

�
;

Mrts ¼ ½grðK þ PÞ − gtðK þ PþQÞ�½1þ s cos ðϕ~k − ϕ~kþ~pÞ�; N rt ¼ grðKÞgtðK þQÞ: ð9Þ

Here, r; t; s ¼ �label the spin-split bands and ϕ~k depends

on the azimuthal angle θ~k of
~k (and is equal to θ~k for linear

Rashba SOC) [37]. The partial self-energies are defined as
ΣrtðKÞ¼−

R
PgrðKþPÞVeffðPÞ½1þ tcosðϕ~k−ϕ~kþ~pÞ�, such

that the total self-energies of the Rashba subbands are
Σþ ¼ Σþþ þ Σ−− and Σ− ¼ Σþ− þ Σ−þ. In the last line of
Eq. (9), we only used the identity [Eq. (7)]. In contrast to
the SL case, however, the spin-orbit splitting in the
denominators of Πc depend on ~kþ ~p, and thus integration
over P does not, in general, produce the self-energies. This
already tells us that, in general, the imaginary part of δχ33
cannot cancel out between the self-energy and vertex
diagrams.
However, there are two realistic approximations, namely,

of a long-range interaction (p ≪ kF) and of weak SOC
(Δ~k ≪ EF), within which the momentum dependence of
Δ~kþ~p can be neglected. Assuming that these two conditions

are satisfied, the vertex part can again be rewritten in terms
of the partial self-energies. Even in this limit, however,
there is no complete cancellation between the self-energy
and vertex diagrams. Namely, we find that Πa þ Πb þ Πc

can be rewritten as ΠR þ ΠD, where ΠR ¼ R
KðΔ~kF

=q20 þ
Δ2

~kF
ÞfΣþðKÞg2þðKÞ − Σ−ðKÞg2−ðKÞg and

ΠD ¼−
Z
K

Δ~kF

q20þΔ2
~kF

f½Σ−−ðKþQÞ

−Σþ−ðKÞ�g−ðKÞgþðKþQÞ− ðΔ~kF
→−Δ~kF

Þg: ð10Þ

The first term, ΠR, has the same structure as in Eq. (8);
using the same arguments as before, we conclude that
ΠR does not contribute to damping. In contrast, the second
term, ΠD, does have, in general, an imaginary part at
all frequencies, indicating presence of damping. To
calculate ΠD explicitly, one needs to specify the inter-
action, which we choose to be in the form of a dynami-
cally screened Coulomb potential. Deferring the
computational details to Sec. IV of the Supplemental
Material [37], we quote here only the final result for
χ33: near the resonance at Ω ¼ Ω3,

χ−133 ðΩÞ ¼ ð2νμ2BÞ−1A½Ω2
3 − ðΩþ iΓ=2Þ2�

A ¼
�� Δ~kF

ξ~kF
Δ2

~kF
−Ω2

3

�2�
FS

� Δ2
~kF
ξ2~kF

Δ2
~kF
−Ω2

3

�−2

FS

;

Γ ¼ ω2
C

2EF

�Δ~kF

EF

�2

; ð11Þ

where ω2
C ¼ r2sE2

F ln r
−1
s =12π, rs ¼

ffiffiffi
2

p
e2=vF is the

coupling constant of the Coulomb interaction, and ξ2~kF
is a dimensionless form factor which depends on the
details of SOC; for isotropic SOC, ξ2~kF

¼ 1.

The damping rate Γ has an expected FL form. Notice
though that the quasiparticle damping rate in 2D scales as
Γqp ∝ Ω2 lnΩ, as opposed to just Ω2, with a prefactor
which does not depend on rs [38]. Being a gauge-invariant
quantity, Γ contains the differences of the single-particle
self-energies [see Eq. (10)], while Γqp is related to the self-
energy itself. The infrared singularity in the self-energy,
which gives rise to the lnΩ factor in Γqp, cancels out in Γ.
As a result, Γ is on the order of the transport decay rate,
which is smaller than Γqp. The FL nature of the result for Γ
indicates that it would not change substantially if, instead of
a FL with Coulomb interaction, we consider a FL of neutral
particles with short-range interaction. The only change
would be in the prefactor ω2

C which, for the case of a
contact interaction with coupling U, should be replaced
by ∼ðUνEFÞ2.
Since the frequencies of chiral-spin modes are propor-

tional to the spin-orbit splitting, one might be tempted to
conclude that it is better to look for these modes in
materials with strong SOC. Our result in Eq. (11) shows
that the advantage of strong SOC has its limits. Indeed, the
ratio of the linewidth to the mode frequency, γ ≡ Γ̄=Δ̄,
scales as CΔ̄=EF, where Γ̄ and Δ̄ are the appropriate
angular averages of Γ and Δ~kF

, correspondingly, and C a
dimensionless prefactor. In a material with sufficiently
strong eei, one should expect that C ∼ 1. If, in addition,
SOC is also strong (Δ̄ ∼ EF), then γ ∼ 1 and the mode is
overdamped. We emphasize that this effect is a unique
feature of SOC; in contrast, the SL mode remains
undamped (at q ¼ 0) even if the Zeeman energy becomes
comparable to the Fermi energy.
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In a particular model of the screened Coulomb potential,
the effect of damping appears to be rather weak. For
isotropic SOC, Eq. (11) yields C ¼ r2s ln r−1s =12π. Using
parameters for an InGaAs/InAlAs quantum well, we then
find γ ≈ 2 × 10−3Δ̄=EF for an electron number density of
1.6 × 1012 cm2. On the other hand, chiral-spin waves are
also damped by disorder via the Dyakonov-Perel’ mecha-
nism [8]. For a mobility of 2 × 105 cm2=V · s, damping due
to disorder is stronger than that by eei by a factor of 10. One
should not forget, however, that Eq. (11) is valid only for
rs ≪ 1 and the actual numbers may differ from quoted
above as rs increases. Although damping from disorder
appears to be the dominant effect in solid-state systems,
damping due to interaction should be dominant in (fer-
mionic) cold-atom systems with synthetic SOC [3,4],
which have virtually no disorder. In this case, the inter-
action is short-ranged but, as we have already mentioned,
this should only affect the prefactor in Eq. (11).
In conclusion, we showed that eei in the presence of SOC

not only gives rise to a new type of collective modes but
also leads to their damping. This damping occurs even at
q ¼ 0 and its rate scales as the square of the spin-orbit
splitting. This effect occurs because none of the three
components of magnetization is a conserved in the presence
of SOC. This prediction should be important for the
experimental studies of such modes via absorption of
electromagnetic waves, as discussed in Refs. [8,9,11].
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