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We show a generic formation of the primary magnetorotons in the collective modes of the observed
“unconventional” fractional quantum Hall effect states of the composite fermions at the filling factors 4/11,
4/13,5/13,5/17, and 3/8 at very low wave vectors with anomalously low energies which do not have
any analog to the conventional fractional quantum Hall states. Rather slow decay of the oscillations of
the pair-correlation functions in these states is responsible for the low-energy magnetorotons. This is a
manifestation of the distinct topology predicted previously for these fractional quantum Hall effect states.
Experimental consequences of our theory are also discussed.
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The two-dimensional interacting electrons in the
presence of a strong transverse magnetic field create
the correlated ground states of the fractional quantum
Hall effect (FQHE) [1] which are characterized by the
filling factors and topology [2] when the electrons are spin
polarized. The distinction between different topological
natures of the FQHE is revealed through the braid
statistics [3—6] of the quasiparticles, through the structure
of the gapless edge modes [7], and through the nature of
the bulk collective modes [8—11]. A fair amount of interest
has now been rejuvenated [12—14] for the study of certain
“unconventional” FQHE at the filling factors v = 4/11,
5/13, and 3/8 which are in between the two conventional
FQHE filling factors 1/3 and 2/5. While the conventional
FQHE states correspond to the integer quantum Hall effect
of the composite fermions (CFs) [15], which are quasi-
particles consisting of an electron and an even number
(2p) of quantized vortices denoted as 2?CFs, the uncon-
ventional FQHE states are formed due to the nontrivial
correlations [16-18] of the CFs in the partially filled A
levels (AL’s)—effective Landau-like levels of the CFs.
Moreover, the topology of the FQHE states of these CFs is
distinct from that for the electrons at the same filling
factor. In this Letter, we calculate spinless collective
modes of these FQHE states and show that their
unconventional topologies reflect in the anomalously
low magnetoroton energies.

The origins of some of the unconventional incompressible
FQHE states in a range of filling factors between two
prominent Jain states [15] are as follows. In the range 2/5 >
v>1/3 (1/3>v>2/7), the composite fermion filling
factor v* = 1 4+ ¥ of 2CFs (*CFs) is related to the electron
filling factor as v=v"/(2v* +1) [v=0v"/(4* -1)],
where 0 < v < 1. We assume all the electrons are spin
polarized. The >CFs with o = 1/3, 2/3, and 1/2 constitute
v=4/11,5/13, and 3/8, respectively. The partially filled
second AL with filling factors 7 = 1/3, and its particle-hole
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conjugate 2/3, is characterized by the W¢js, Yi, and Quinn
(WYQ) state [16], which is the ground state of the Haldane
pseudopotential [19] V5 that minimizes occupation with
relative angular momentum 3 between any two particles.
The even-denominator 3/8 state is characterized [17] by the
anti-Pfaffian pairing correlation [3,20,21] in the half filled
second AL that makes it a non-Abelian FQHE state. The
states of *CFs at v = 4/13,5/17, and 3/10 have identical
character [22] with the states of ?CFs atv = 4/11,5/13, and
3/8, respectively.

We calculate the dispersion of the Girvin-MacDonald-
Platzman (GMP) mode [8] for the filling factors v = 4/11,
5/13, and 3/8 in the range 2/5 > v > 1/3, and for v =
4/13 and 5/17 in the range 1/3 > v > 2/7, which are
some of the unconventional FQHE states observed
[12—-14,23,24] and have recently been proved [17,18,22]
as incompressible states. We show two prominent, apart
from several weaker, magnetorotons for all these states: the
position of the secondary one on either side of v =1/3
matches that for the nearest prominent states at v = 2/5 or
2/7; the primary one occurs at a very low wave vector and,
more importantly, its energy is extremely low compared to
that for the Jain states. These are the manifestations of
the unconventional topology of these states, whereas the
conventional topology at v =4/11 produces just one
magnetoroton [25] whose energy is much higher. We find
that the slow decay of the oscillations in the pair-correlation
function g(r) around its long-range limiting value causes a
magnetoroton having very low energy.

We employ the single mode approximation (SMA) [8] to
obtain the dispersion of the GMP collective modes of the
FQHE states with unconventional topology. In the SMA,
the spin-conserving excited state may be obtained by
operating the lowest Landau level (LLL)-projected num-
ber-density operator on the ground state at a given filling
factor leading to the expression for the dispersion [8] of
the excitation energies:
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with momenta k and ¢, and Fourier transform of the
Coulomb potential v(q) = 27e*/(eq). Here S(k) = S(k) —
14+ ¢ *7/2 is the LLL projection of the static structure
factor S(k). We thus determine S(k) below for calculating
the GMP mode.

We begin with the calculation of pair-correlation func-
tions g(r) between electrons using the ground state wave
function for a certain filling factor in the spherical geometry
[19], in which N electrons move on the surface of a sphere
with radius R = 1/0QI, exposed to a magnetic flux 2Q in
the unit of a flux quantum ¢, = hc/e produced by a
magnetic monopole placed at the center of the sphere. The
arc distance between two particles has been considered as r.
The relation between the total (integer) flux 2Q and the
total number of electrons N for all of the spin-polarized
FQHE states in the range 2/5 > v > 2/7 is as follows:

20=v'(N-1)-(3-v")(1+2), (2)

where the so-called “flux shift” A for the CFs in the partially
filled AL is defined in terms of the magnitude of the
effective flux as 2|Q*| = 77 !N — (1 +2), with N =N —
(2|/Q*| + 1) being the number of CFs in the partially filled
AL, and (2|Q*| + 1) is the degeneracy of the lowest AL.
Recall [16-18,22] that the choice of A characterizes the
nature of the correlation in the partially filled AL: A = 7 for
v=4/11and 4/13; A= =2 for v =5/13 and 5/17; and
A =—1 for 3/8. The composite-fermion-diagonalization
(CFD) method [26], which is almost exact [17,18,27] for a
finite number of particles, has been used to show that the
ground states at the filling factors with these particular A
are incompressible. Except for the 3/8 state for which we
consider the CFD ground state, we have considered the
proposed [18,22] CF-WYQ wave functions, i.e.,

v, = PLLLH(”/Uk - vjuk)z@‘fﬁQ, (3)
Jj<k
wY
\I’z = PLLL]TJ](:(”j”k - vjuk)4<1>_(l$p), (4)
]<

respectively, for the states corresponding to >CFs and
4CFs, for calculating g(r) as they have significantly high
overlap with the CFD ground state, which allows us to
calculate for a higher number of particles. (We have checked
that the pair correlation calculated using the CFD ground
states for a smaller number of particles agrees well with that
calculated using the wave functions up to a maximum
accessible distance.) Here, the spherical spinor variables
u = cos(6/2)e™/? and v = sin(6/2)e'?/?, P;; denotes

projection into the LLL, and @‘Iggﬂ) denotes the wave

function at the filling factor 1 4+ 2 when the partially filled
second Landau level would have WYQ correlation [16], with
=+ referring to the sign of the effective magnetic flux, 2Q*.

We employ the Monte Carlo method with a Metropolis
algorithm to calculate g(r) for v =4/11 and 5/13 using
the state W, for N = 32 and 36, respectively, v = 4/13 and
5/17 using the state W, for N = 24 and 26, respectively,
and v = 3/8 using the CFD ground state for N = 24.
As the computation time grows rapidly with N in the
determination of a huge number (equal to the number of
basis states in a system with particle N and flux 2|Q*| + 2)
of N x N determinants in each step of the Monte Carlo
calculation and also in the projection into the LLL of the
states involving “CFs with negative effective flux, we
couldn't consider more number of particles in our numerical
calculations. We find that g(r) oscillates around its long-
range value 1.0 with a smaller decay rate in comparison to
the neighboring Jain states, but the amplitude of the
oscillation in the calculated data for finite systems does
not die out completely to obtain the required g(r) = 1 at
large distances. We therefore extrapolate the numerical data
up to large distances using the damped-oscillatory form
g(r) =1+ A(r/1)~*sin(pr/l — y) used earlier [28], where
numerical constants A, &, 3, and y, which are different for
different filling factors, are determined by fitting the
available numerical data. We thus obtain more oscillations
in g(r) before it converges to its large distance limit.
For example, in the case of v =4/11, there are three
oscillations [18] obtained using the CFD ground state for
N = 28 and four oscillations using the wave function ¥, up
to N = 32 for the finite systems, but our thermodynami-
cally extrapolated g(r) acquires three more oscillations
before it converges to unity. Figure 1 shows g(r) for the
thermodynamic systems at different filling factors in the
range 2/5> v >2/7. While g(r) for v =1/3 has one
maximum, v = 2/5 and 2/7 have two maxima each, and a
state in the Jain sequence [15] with v = n/(2n £ 1) has n
maxima [29], ¢(r) for the unconventional states have
several maxima and the number of maxima does not match,
in general, with the numerator of the filling factor. This has
a direct consequence on the static structure factor and hence
on the energy dispersion of the collective modes. Recall
[29] that the energy of the primary roton at v = 5/11 is
much less than the energy at v = 2/5 because the number
of oscillations in g(r) for the former is more than the latter.

The static structure factors may then be calculated
using the relation S(k) = 1 + ng [ dre®*"[g(r) — 1], where
the mean electron density ny = v/(2z?). As suggested by
GMP [8], an appropriate form of the pair-correlation function
of a quantum liquid in a FQHE state at the LLL is given by

2

292 2 r mn 2
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FIG. 1 (color online). ~Calculated pair-correlation functions g(r)
for finite systems and their thermodynamic extrapolation in the
damped-oscillatory form g(r) = 1 4+ A(r/I)"*sin(fr/l — y) used
earlier [28], with A, a, 5, and y being numerical constants, for (a)
v=4/11,(b)vr=5/13,(c)v =3/8,and (d)v = 4/13 and 5/17.
All of these are zoomed for showing oscillations in g(r). Inset (c)
shows ¢(r) for v = 3/8 without zooming. Insets of (a), (b), and
(d) show g(r) for v =1/3, 2/5, and 2/7, respectively.

where the prime indicates summation over odd m only.
The numerically calculated g(r) and its thermodynamic
extrapolation data are fitted with the functional form (5),
and the upper cutoff value of m is taken to be very large for
picking up oscillations in g(r). The coefficients c,, are
constrained with the charge neutrality, perfect screening,
and the compressibility sum rules [8,30-32] when an analogy
with the two-dimensional one component plasma is invoked,
and can be expressed in terms of the respective moments
of the pair-correlation functions: My = —1, M| = —1, and
My, =2("-2), with M, =nq [dr(r*/2)"[g(r) - 1].
These sum rules ensure that the projected structure factor
into the LLL behaves as S(k) — (kI)*(1 —v)/8v as k — 0.

We calculate S(k) for all the states considered here and
show them in Fig. 2. S(k) for v = 1/3, 2/5, and 2/7 have
also been recalculated [33] for comparison and are shown
as insets in Fig. 2. Owing to the many more number of
oscillations in g(r), a change in the sign of the slope of S(k)
occurs several times. Also, the spectral weights at low
through moderate k, (k < 1.5/7!), are more than that of the
neighboring Jain states.

We next calculate the energy dispersion A(k) of the
GMP modes for the unconventional FQHE states at the
filling factors v =4/11, 5/13, 3/8, 4/13, and 5/17 and
show them in Fig. 3. We also show the dispersion of the
GMP modes for neighboring Jain states, viz,v = 1/3, 2/5,
and 2/7, as insets of Fig. 3. While v = 1/3 has one
magnetoroton at k = 1.5/"', v =2/5 and 2/7 have two
magnetorotons each, of which the primary roton minimum
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FIG. 2 (color online). LLL-projected static structure factor S(k)
for (a) v =4/11, (b) v=5/13, (c) v=13/8, and (d) v =4/13
and 5/17. §(k) for neighboring Jain states at v = 1/3, 2/5, and
2/7 are shown in the insets of (a), (b), and (d), respectively.

occurs at k =0.4/"" and the secondary roton minimum
occurs at k = 1.6/=' and 1.4/~!, respectively. The uncon-
ventional FQHE states in the ranges 2/5 > v > 1/3 and
1/3 > v > 2/7 have two prominent magnetorotons each,
of which the position of the secondary one matches that for
v =2/5 and 2/7 in the respective ranges and the primary
one forms at k = 0.2-0.3/"!. Several other weaker mag-
netorotons also form for these states due to the appearance
of several changes in the sign of the slopes of S(k) at low
through moderate k, caused by the several oscillations in
g(r). The energy of the primary roton is generically very
small and it lies in the range 0.004-0.011 e?/el. As the
decay rate of the amplitude of the oscillation in g(r) is
less for the unconventional FQHE states compared to the
neighboring Jain states, and the corresponding S(k) has
higher spectral weight at moderate k, the energy of the
primary roton becomes extremely small.

Apart from ignoring ubiquitous disorder and Landau
level mixing, we have also not considered the contribution
of finite thickness because our calculation of the dispersion
is based on the SMA, which is not the best for quantitative
evaluations. Nonetheless, our study has merit in showing
the formation of primary magnetorotons at very low wave
vector with very low energies as the SMA has proved itself
a good approximation in the case of the primary sequence
of states at v =n/(2n + 1): It predicts correct numbers
[10,29] of magnetorotons, shows correct qualitative behav-
ior at low momenta, and provides a comparable (within
10%-35% deviation) estimation of energy of the primary
magnetoroton to that predicted in a more robust excitonic
theory of the CFs. The determination of collective modes
using standard [9-11] inter-AL excitons of CFs will not
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FIG. 3 (color online). Dispersion of the GMP mode A(k) in the
unit of e?/el for (a) v = 4/11, (b) v = 5/13, (c) v = 3/8, and (d)
v=4/13 and 5/17. A(k) for neighboring Jain states at v = 1/3,
2/5, and 2/7 are shown as the insets of (a), (b), and (d),
respectively. While there is only one magnetoroton mode at
v = 1/3 and two magnetoroton modes at v = 2/5 and 2/7, all the
other states in the range 2/5 > v > 2/7 have two prominent
magnetorotons and some not so prominent magnetorotons.

provide the lowest energy collective mode for the
states studied here, as it presumably involves intra-AL
excitations.

The resonant inelastic light scattering experiments
(RILSE) [34,35] using depolarized geometry where the
directions of polarization of the incident and scattered light
are perpendicular to each other find very low energy (below
Zeeman energy) modes in the filling factor range 2/5 >
v > 2/7. Not only the spin excitations but also the spinless
excitations are selected in the depolarized spectra. On the
other hand, polarized spectra in which the polarizations of
the incident and scattered light are parallel select only the
spinless excitations. Therefore, observing very low energy
modes in the polarized spectra of the RILSE at the filling
factors such as v =4/11, 4/13, and 5/13 will prove the
presence of the low-energy magnetorotons in the collective
modes of excitations for these states. Surface acoustic wave
experiments [36], which are performed in determining the
dispersion of the collective modes at v = 2/5, 3/7, and
4/9, will be very much suitable in determining the low-
energy magnetorotons predicted here. These excitations
should also be accessible in time domain capacitance
spectroscopy [37].

In conclusion, we show that the magnetorotons form at
very low energies in the dispersion of the spinless neutral
collective modes at v = 4/11, 4/13,5/13,5/17, and 3/8,
described by the FQHE states with unconventional top-
ology. The observation of such low-energy modes will be in
support of the presence of unconventional FQHE states

between two conventional FQHE states in the lowest
Landau level.
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