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Two-component systems with equal concentrations of electrons and holes exhibit nonsaturating, linear
magnetoresistance in classically strong magnetic fields. The effect is predicted to occur in finite-size
samples at charge neutrality due to recombination. The phenomenon originates in the excess quasiparticle
density developing near the edges of the sample due to the compensated Hall effect. The size of the
boundary region is of the order of the electron-hole recombination length that is inversely proportional to
the magnetic field. In narrow samples and at strong enough magnetic fields, the boundary region dominates
over the bulk leading to linear magnetoresistance. Our results are relevant for two-and three-dimensional
semimetals and narrow band semiconductors including most of the topological insulators.
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Growing interest in narrow band semiconductors such as
topological insulators and semimetals (e.g., graphene)
continues to stimulate intense experimental research. An
increasing number of these studies report observations of
large linear magnetoresistance (MR), which often shows
no sign of saturation in classically strong magnetic fields
even at room temperatures [1–8].
The story of linear MR in nonmagnetic compounds,

notably in compensated semimetals [9,10], can be traced
back to the work by Kapitza in 1928 on bismuth [11]. The
topic has received revived attention after the discovery of
huge linear MR in bismuth films [12,13], as well as in AgSe
and AgTe compounds [14–18], which are narrow band
semiconductors [19]. A linear increase of resistance by 3
orders of magnitude has been seen in these experiments in a
wide range of temperatures. The term “titanic magneto-
resistance” was coined very recently in Refs. [20–23],
where both linear and nonlinear change of resistance in
CdAs, WTe, and NbSb has been observed.
Most of the conventional transport theories predict either

absent or parabolic MR [24]. Classical linear MR has been
predicted by Azbel for a three-dimensional metallic slab with
smooth boundaries [25,26]. Quantum linear MR has been
found by Abrikosov [27] for Dirac fermions in compensated
semimetals in the extreme limit, ωc ≫ T (only one Landau
level is filled), which is not reached in most measurements
(here,ωc is the cyclotron frequency, T is the temperature, and
ℏ ¼ kB ¼ 1). In weak magnetic fields the linear behavior
may also be associated with quantum interaction corrections
[28,29] or with the classical “corridor” effect [30]. Certain
specific features of excitation spectra and models of disorder
may also lead to linear MR [25,31–35]. Experimentally,
linear MR has been observed in a wide variety of 2D and 3D

materials [1–9,11–18,36–42] and in a broad range of
magnetic fields, suggesting that a more general mechanism
is behind the observed behavior.
A classical approach to magnetotransport that is inde-

pendent of the details of excitation spectra has been put
forward by Parish and Littlewood on the basis of a classical
random-resistor model [43]. This theory was argued to
describe a strongly inhomogeneous (or granular) material,
such as AgSe. It is unclear, however, whether the same
approach can be used to capture the physics of clean,
homogeneous systems, such as the high-quality BiSb nano-
sheets [4] and homogeneous monocrystalline HgTe/CdTe
samples [6,8]. Moreover, several experiments [4,17,18]
indicate that the necessary condition for the nonsaturating,
linear MR is the presence of two types of charge carriers,
e.g., electrons and holes, in nearly equal concentrations.
In this Letter, we propose a classical mechanism for

linear MR in finite-size samples near charge neutrality
(charge compensation). Our approach is based on the
kinetic theory for a two-component system. The dominant
contribution to the effect originates in the narrow regions
near the sample edges; see Fig. 1.
The conventional Drude theory predicts that the longi-

tudinal resistivity of a two-component system [9,10]
depends on the applied magnetic field (in contrast to the
simplest one-component case [24,26,44]):

ρxx ¼
ρ

eμ
1þ ðμBÞ2

ρ2 þ n2ðμBÞ2 : ð1Þ

Here, B is the magnetic field, μ is the mobility (for
simplicity, the mobility is taken to be the same for electrons

PRL 114, 156601 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

17 APRIL 2015

0031-9007=15=114(15)=156601(6) 156601-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.114.156601
http://dx.doi.org/10.1103/PhysRevLett.114.156601
http://dx.doi.org/10.1103/PhysRevLett.114.156601
http://dx.doi.org/10.1103/PhysRevLett.114.156601


and holes), e is the absolute value of the electron charge,
ρ ¼ ne þ nh is the quasiparticle density, and n ¼ ne − nh is
the charge density per unit charge with neðhÞ standing for
the corresponding electron (hole) densities. Equation (1)
predicts vanishing MR far from the charge neutrality,
n ¼ ρ ¼ ne, and a nonsaturating, quadratic MR at charge
neutrality, n ¼ 0, where the Hall effect is compensated:
σxy ¼ ρxy ¼ 0.
At charge neutrality, the above result corresponds to a

constant quasiparticle flow, P ¼ je þ jh, which is orthogo-
nal to the electric current, J ¼ −ej ¼ −eðje − jhÞ (here, je
and jh are the electron and hole current densities), due to the
classical Hall effect. The lateral quasiparticle flow P cannot
be affected by the Hall voltage since the latter is not formed
at charge neutrality. On the other hand, the quasiparticle
current must vanish at the sample boundaries. Thus, the
result of Eq. (1) is, strictly speaking, incompatible with
finite-size geometry.
Here we demonstrate that boundary effects may signifi-

cantly modify Eq. (1), leading to nonsaturating, linear MR
near the charge neutrality point when the sample width is
comparable with the electron-hole recombination length l0.
The latter may vary from hundreds of nanometers to
centimeters depending on material properties and temper-
ature. The role of the quasiparticle recombination in “aniso-
tropic size effects” in narrow band semiconductors and
semimetals was stressed long ago by Rashba and co-workers
[45]. A related phenomenon was suggested recently to be
responsible for a negative Coulomb drag in graphene [46].
To develop intuition for the boundary effect, let us

consider a rectangular 2D sample of length L and width
W; see Fig. 1. The same arguments apply to a 3D slab in a
magnetic field parallel to its surfaces. For simplicity, we
assume an electron-hole symmetric system at charge
neutrality, where the electric current J is injected in the
x direction. Since the classical Hall effect for electrons
compensates that for holes, the electrostatic potential in
the sample remains flat and the charge density is zero

everywhere, n ¼ 0. The distribution of electron and hole
currents je;h, however, is nontrivial: it is essentially different
in the bulk of the sample and in the boundary regions,
see Fig. 1 (resembling the “static skin effect” [25]). In the
bulk, the transverse quasiparticle current P ¼ je þ jh leads
to geometric MR, Rbulk ¼ ðL=WÞð1þ μ2B2Þ=ðeρμÞ [see
Eq. (1) for n ¼ 0]. In single-component systems, such a
geometric effect is absent due to the presence of Hall
voltage, unless the Corbino geometry is used or the sample
is specifically prepared to be short and wide, i.e., for
W ≫ L [9,47].
The bulk current P leads to a formation of excess

quasiparticle density near the sample edges at y ¼
�W=2 (as shown in Fig. 1) that has to be relaxed by
electron-hole recombination, e.g., due to electron-phonon
scattering. This yields variation of the quasiparticle density
over the distance lR ¼ l0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2B2

p
from the boundary,

where l0 ¼ 2
ffiffiffiffiffiffiffiffiffi
DτR

p
depends on the diffusion coefficient

D and the recombination time τR. As B increases, the
recombination length lR gets shorter because of multiple
cyclotron returns of electrons and holes to each other.
In the boundary regions of the size of the recombination

length lR, the electron and hole currents are directed
essentially along the x axis. Thus, the edge contribution
to the overall resistance lacks the geometric enhancement
and at charge neutrality is given by (B ¼ jBj)

Redge ¼ L=ðlReμρÞ ≃μB≫1
LB=ðl0eρÞ: ð2Þ

The total sheet resistance R□ for W ≫ lR is estimated by
regarding the edge and the bulk as parallel resistors:

R−1
□

¼ ðL=WÞðR−1
bulk þ R−1

edgeÞ:

This yields R−1
□

¼ eρμ½1=ðμBÞ2 þ l0=ðWμBÞ�, where we
assumed μB ≫ 1. Thus, for sufficiently strong fields, the
MR at charge neutrality is linear in the field, namely,

R□ ¼ WB=ðeρl0Þ; l0=ðμBÞ ≪ W ≪ μBl0: ð3Þ

Remarkably, within the semiclassical Drude model any
two-component neutral liquid with recombination is char-
acterized by linear MR as B → ∞.
Upon deviation from charge neutrality, the geometric

resistance in the bulk of the sample disappears due to
formation of the Hall voltage. From Eq. (1), for μB ≫ 1

one finds R−1
bulk ¼ ðW=LÞeρμ½1=ðμBÞ2 þ n2=ρ2�, yielding

R−1
□

¼ eρμ½1=ðμBÞ2 þ n2=ρ2 þ l0=ðWμBÞ�: ð4Þ
Thus, the linear regime of Eq. (3) holds in strong fields as
long as n=ρ ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0=WμB

p
.

In the remainder of this Letter we use the standard
equations of macroscopic electrodynamics to show that our
result (3) is generic for compensated two-component

FIG. 1 (color online). Electron (green) and hole (red) trajecto-
ries in an electron-hole symmetric setup at charge neutrality. The
bulk of the sample exhibits large geometric MR as a consequence
of the compensated Hall effect: electron and hole trajectories are
tilted but the Hall voltage is absent. Lateral quasiparticle flow P
results in excess quasiparticle density near the sample edges,
where recombination processes due to electron-phonon interac-
tion lead to linear MR.
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systems. Within linear response, the electric current is
proportional to the electric field E and the gradient of the
carrier concentration [48,49] (here, ν is the thermodynamic
density of states, q ¼ �e is the carrier charge)

Ji ¼ σij½Ej þ ðqνÞ−1∂jn�: ð5Þ

Inverting the conductivity matrix, we rewrite Eq. (5) as

Eþ qDr0∇n ¼ r0J − rHJ × ez; ð6Þ
where r0 and rH are the longitudinal and Hall resistivities
and ez is the direction of the magnetic field. The essential
feature of Eq. (6) is that Dr0 is determined only by the
thermodynamic density of states and is independent of the
nonquantizing magnetic field [50].
The gradient term in Eq. (6) indicates inhomogeneity of

quasiparticle currents and densities. In a narrow sample of
length L and width W ≪ L, this appears due to the closed
boundary conditions jyðy ¼ �W=2Þ ¼ 0. At charge neu-
trality, the electric charge remains uniform (due to the
vanishing Hall effect). The charge density should be
determined from a self-consistent solution of the linear-
response equations and the corresponding electrostatic
problem. In 2D samples and in the limit of a strong
screening by the gate, the relation simplifies as

E ¼ E0ex − ðq=CÞð∂δn=∂yÞey: ð7Þ

Here E0 is the external field, δn is the density fluctuation,
C ¼ ϵ=4πd is the gate-to-channel capacitance per unit area,
d is the distance to the gate, ϵ is the dielectric constant.
In 3D samples with thickness d0, Eq. (7) is replaced by
dEy=dy ¼ qδnðyÞ=ϵd0, Ex ¼ E0.
If the system comprises two types of carriers (e.g.,

electrons and holes), which are completely independent
of each other, one can apply Eq. (6) to the electrons and
holes [51]. The measured electric current is then given by
the sum of the electron and hole contributions. In particular,
at charge neutrality the Hall current vanishes since the
electrons and holes carry opposite charge.
Taking into account quasiparticle recombination proc-

esses, we find that the linear-response equations (6) can
still be applied independently to the electrons and holes, but
should be supplemented by the continuity equations

∇ · je;h ¼ −ðΓeδne þ ΓhδnhÞ=2; ð8Þ

where δnαðrÞ ¼ nαðrÞ − n0;α is the density deviation from
its equilibrium value n0;α and Γα is the electron-hole
recombination rate, e.g., due to electron-phonon interaction
(the index α ¼ e; h refers to electrons or holes).
Further analysis is greatly simplified at charge neutrality

(n0 ¼ 0) under the assumption of electron-hole symmetry:
Dα ¼ D, r0;α ¼ r0, rH;e ¼ −rH;h ¼ rH, and Γα ¼ 1=τR.
We now rewrite Eqs. (6) and (8) as

Dr0∇δρþ r0Pþ rHj × ez ¼ 0; ð9aÞ

r0jþ 2E=eþ rHP × ez ¼ 0; ð9bÞ

∇ · P ¼ −δρ=τR; ∇ · j ¼ 0; ð9cÞ
where δρ ¼ δne þ δnh is the deviation of the quasiparticle
density from its equilibrium value ρ0 ¼ n0;e þ n0;h. In the
electron-hole symmetric system, the charge fluctuations are
absent: δn ¼ 0. Thus, we find E ¼ E0ex irrespective of the
electrostatic properties and dimensionality of the system.
In addition to quasiparticle recombination, electron-

electron interaction leads to mutual friction between
electrons and holes [10]. This effect can be taken into
account by adding the frictional term rehj to Eq. (9b),
effectively renormalizing r0 in this equation. This does not
lead to any qualitatively new behavior of the system and is
omitted below for simplicity.
The model (9) is solved by P ¼ PðyÞey, j ¼ jðyÞex,

δρ ¼ δρðyÞ. Excluding the variation of the quasiparticle
density, we rewrite the remaining equations as

−DτR∂2P=∂y2 þ PðyÞ − ðrH=r0ÞjðyÞ ¼ 0; ð10aÞ

jðyÞ ¼ −j0 − ðrH=r0ÞPðyÞ; ð10bÞ

where j0 ¼ 2E0=ðer0Þ. Excluding jðyÞ from Eqs. (10), we
obtain a linear differential equation for PðyÞ with the
boundary conditions Pð�W=2Þ ¼ 0, solved by

PðyÞ ¼PB

�
coshð2y=lRÞ
coshðW=lRÞ

− 1

�
; PB ¼ j0

r0rH
r20þ r2H

: ð11Þ

Here we have introduced the electron-hole recombination
length lR ¼ l0r0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ r2H

p
. The profile of the quasipar-

ticle flow PðyÞ is illustrated in Fig. 3 (bottom) along with
the corresponding quasiparticle density δρðyÞ. The result
(11) and the corresponding current jðyÞ obtained from
Eq. (10b) fully agree with the qualitative distribution of
quasiparticle currents shown in Fig. 1.
In 2D systems (attracting substantial experimental inter-

est in the context of linear MR) the sheet resistance is
defined as

R□ ¼ E0=J̄; J̄ ¼ −
e
W

Z
W=2

−W=2
jðyÞdy: ð12Þ

From Eqs. (10b), (11), and (12) we obtain

R−1
□

¼ 2FðW=lRÞ=r0 þ 2½1 − FðW=lRÞ�r0=ðr20 þ r2HÞ;
ð13Þ

where FðxÞ ¼ tanhðxÞ=x. The result of Eq. (13) is plotted
schematically in Fig. 2 for three different values of the ratio
W=l0, where l0 is the zero-B recombination length.
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Let us analyze Eq. (13) in three different regimes
determined by the ratio of the sample width and recombi-
nation length. For the widest samples, we find the standard
[9,24] nonsaturating geometric MR, which is quadratic in
the field

R□ ¼ ðr20 þ r2HÞ=ð2r0Þ; W ≫ lRr2H=r
2
0: ð14Þ

Here the geometric enhancement is the direct consequence
of the compensated Hall effect: the electron and hole
trajectories are tilted, but the Hall voltage is zero.
In the narrowest samples the geometric factor is absent:

R□ ¼ r0=2; W ≪ lR: ð15Þ

In this case, both electron and hole currents flow along the
x axis due to strong electron-hole recombination.
In classically strong magnetic fields, rH ≫ r0, there

exists another regime of intermediate system widths, where
resistance depends linearly on the magnetic field:

R□ ¼Wr0=ð2lRÞ ∝ B; lR ≪W ≪ lRr2H=r
2
0; ð16Þ

where we assume the typical situation [50] where r0 is
independent of B and rH ∝ B. Within the Drude model
rH=r0 ¼ μB, r0 ¼ 2=eμρ, and Eq. (16) coincides with
Eq. (3). If electron-hole friction reh is taken into account,
the result (16) acquires the extra factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ reh=r0

p
.

In an experimentally relevant 3D setup made of a slab of
thickness W subject to a magnetic field parallel to its side
boundaries, our theory predicts the same results (13)–(16)
for the resistivity (in particular, the linear magnetoresis-
tivity in strong fields), up to a geometric factor. This
follows directly from Eqs. (9) and the absence of induced
electric field at charge neutrality.
Our macroscopic model is representative in a wide class

of two-component systems in a wide range of magnetic
fields and temperatures. All microscopic details (i.e., the
excitation spectrum, model of disorder, etc.) are encoded in
lR, r0, and rH. The model (9) ignores quantum effects: we
assume Tτα ≫ 1 (where τα is the elastic mean-free time),

overlapping Landau levels ωα ≪ T, and, hence, the field-
independent recombination rates Γα.
In Supplemental Material [52] we present a solution

away from charge neutrality and for inequivalent electron
and hole bands. This solution exhibits linear MR, as in
the case of equivalent bands, Eq. (16). For an electron-
hole-symmetric system close to charge neutrality
(ξ ¼ n0=ρ0 ≪ 1) and for r0CD ≪ 1, the general result
simplifies to

R□ ¼ r0
2

1þ ðrH=r0Þ2
1þ ðrH=r0Þ2½ξ2 þ FðW=lRÞ�

: ð17Þ

In the limit of strong field, rH=r0 ≫ 1, Eq. (17) can also be
anticipated from Eq. (4). The result (17) is illustrated in
Fig. 3 (top panel). The MR is strongly peaked at charge
neutrality (the same holds also for inequivalent electrons
and holes [52]). We conclude that the simplified electron-
hole-symmetric model (9) captures all qualitative features
of the phenomenon.
To summarize, we proposed a classical, recombination-

induced mechanism of MR in compensated semimetals and
narrow band semiconductors. The universal linear-in-BMR
arises in finite-size samples in classically strong magnetic
fields due to the interplay of bulk and edge contributions.
This mechanism is expected to be relevant for the explan-
ation of linear MR observed experimentally in various two-
component 2D and 3D systems. Microscopic calculations
based on the kinetic equation approach [53,54] confirm that

FIG. 2 (color online). Sheet resistance R□ at charge neutrality
versus magnetic field [Eq. (13)] for three different values of the
ratio W=l0. The resistance is rescaled for better presentation.

FIG. 3 (color online). Sheet resistance R□ (top) versus mag-
netic field as given by Eq. (17) for W=l0 ¼ 10 and different
values of the parameter ξ ¼ n0=ρ0. The bottom panels illustrate
the spatial profiles of the quasiparticle current [Eq. (11)] and
density [obtained from Eq. (9c)] at charge neutrality forW=lR ¼
10 that are measured in the units of PB and ρB ¼ 2PBτR=lR.
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our general mechanism is responsible for linear MR in both
disorder- (τα ≪ τee) and interaction-dominated (τα ≫ τee)
regimes in materials with different spectra. In this way we
find microscopic expressions for lR, r0, and rH in conven-
tional 2D and 3D narrow band semiconductors (including
the case when the symmetry between valence and con-
duction bands is violated [52]), topological insulators,
bilayer graphene, and in semimetals with linear spectrum,
e.g., in monolayer graphene and 3D Weyl semimetals.
Our theory can be further extended to inhomogeneous
samples in the spirit of Ref. [55]. In this case, the result (3)
is expected to hold for arbitrary system sizes with W
corresponding to the typical size of macroscopic
inhomogeneities.
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