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The Luttinger-Ward functional Φ½G�, which expresses the thermodynamic grand potential in terms of the
interacting single-particle Green’s function G, is found to be ill defined for fermionic models with the
Hubbard on-site interaction. In particular, we show that the self-energy Σ½G� ∝ δΦ½G�=δG is not a single-
valued functional of G: in addition to the physical solution for Σ½G�, there exists at least one qualitatively
distinct unphysical branch. This result is demonstrated for several models: the Hubbard atom, the Anderson
impurity model, and the full two-dimensional Hubbard model. Despite this pathology, the skeleton
Feynman diagrammatic series for Σ in terms of G is found to converge at least for moderately low
temperatures. However, at strong interactions, its convergence is to the unphysical branch. This reveals a
new scenario of breaking down of diagrammatic expansions. In contrast, the bare series in terms of the
noninteracting Green’s function G0 converges to the correct physical branch of Σ in all cases currently
accessible by diagrammatic Monte Carlo calculations. In addition to their conceptual importance, these
observations have important implications for techniques based on the explicit summation of the
diagrammatic series.
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The formalism of the Luttinger-Ward functional (LWF)
[1] is a crucial constituent of the modern quantum many-
body physics framework. Following Baym and Kadanoff
[2], the free energy is introduced as a functional of the full
single-particle Green’s function (GF) G, which describes
properties of single-particle excitations in a system of
interacting particles [3]

Ω½G� ¼ tr lnG − tr½ðG−1
0 −G−1ÞG� þ Φ½G�: ð1Þ

In this expression, G0 is the bare GF in the absence of
interactions, and Φ½G� is the LWF, which is the focus of the
present Letter. Defined only by the interaction term Hint,
the LWF is universal: the form of Φ½G� does not depend
explicitly on the quadratic part of the Hamiltonian (bare
G0) and is shared by all systems with the same structure
of interactions between the particles. In this formalism, the
self-energy is also a functional of G

Σ½G� ¼ 1

T
δΦ½G�
δG

; ð2Þ

while the stationary point of Ω, given by δΩ=δG ¼ 0,
yields the Dyson equation G−1 −G0

−1 þ Σ½G� ¼ 0,
viewed here as a nonlinear functional equation for G at
equilibrium.
The use of functionals Ω½G�, Φ½G�, Σ½G� has proven

indispensable in a range of contexts from formal

derivations to all orders in perturbation theory, such as
that of Luttinger’s theorem [4], to devising approximations
that are automatically consistent with sum rules and
conservation laws [2]. Notable examples are the self-
consistent Hartree-Fock approximation, or the dynamical
mean-field theory (DMFT) [5]. A number of extensions of
the DMFT have been recently proposed, formally based on
the LWF, such as cluster (for reviews, see, e.g., [6–8]) and
diagrammatic [9] extensions, the DMFTþ GW method
[10,11], the dynamical vertex approximation [12], dynami-
cal cluster approximation plus (DCAþ) [13], etc.
There are two ways to justify the formalism and propose

a formal construction of the LWF Φ½G�, whose closed-form
expression is unattainable in general. One is based on the
diagrammatic perturbation expansion [1,14], as illustrated
in Fig. 1 for the Hubbard interaction Hint ¼ U

P
ini↑ni↓.

Here, Φ½G� is constructed explicitly as the sum of all
“skeleton” (also called “bold-line”) diagrams in terms ofG,
i.e., the diagrams that cannot be disconnected by cutting
two propagator lines or, equivalently, that contain no
self-energy insertions.
The second approach, which is formally nonperturbative,

is to view Φ as a Legendre transform of the free energy
with respect to the single-particle GF [15–18] The idea
is to constrain the GF to take a preassigned value G
by appropriately choosing the bare propagator G0, thus,
viewed as a Lagrange multiplier. For the Legendre
transform—and hence, for Φ½G�—to be properly defined,
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the map G0 → G must, therefore, be invertible: there must
be a unique bare propagator G0½G� such that the interacting
GF takes the value G for the specified Hamiltonian Hint.
In this Letter, we show that the LWF for the Hubbard on-

site interaction is ill defined. In particular, Σ½G� is found
to be a non-single-valued functional of G with at least one
qualitatively distinct unphysical branch, making the map
G0 → G not invertible. This is a nonperturbative statement,
which does not rely on the diagrammatic definition of the
LWF, and which is based on evidences from several models
with the Hubbard interaction. Although this finding does
not necessarily undermine formal considerations based
on the LWF, provided they are explicitly constrained to
the physical branch, it has dramatic consequences for
diagrammatic expansions.
The existence of two branches of Σ½G� inevitably raises

the question of what happens to the skeleton series for Σ in
terms of G, Fig. 1. A natural scenario would be divergence
in the spirit of Dyson’s collapse argument [19]. Indeed, it is
believed that skeleton expansions are doomed to diverge
at least at strong interactions or whenever the state of the
system is not conformal to a Fermi liquid, like, e.g., a Mott
insulator [20]. Here, we demonstrate—by explicit summa-
tion using the diagrammatic Monte Carlo (DiagMC)
technique [21,22]—that the skeleton series for Σ does
converge even when G is that of a Mott insulator (at least
at moderately low temperatures), the convergence with
diagram order getting progressively faster at large U.
However, at sufficiently strong interactions and close to
half filling, the convergence is to the unphysical branch,
while in the weakly correlated regime the skeleton series
converges to the physical solution [23].
Consistent with the universality of the LWF, this quali-

tative conclusion applies to all models with the Hubbard
interaction we considered, including the Hubbard atom
and the single-site Anderson impurity model (for which
the unphysical branch is independently found by non-
perturbative means), as well as the two-dimensional
Hubbard model [24].
Convergence of the skeleton diagrammatic series to an

unphysical branch rather than its divergence in difficult
regimes is a critical result for a wealth of analytic and
numeric approaches, especially in light of the substantial
recent interest in methods based on explicit summation of
skeleton diagrams [9,25–27]. It reveals a generic scenario
of the breaking down of skeleton expansions, in which

there is no a priori indication of the series becoming
untrustworthy. We demonstrate, however, that, at least for
the models considered here and in (unordered) regimes
currently accessible by DiagMC, the bare series in terms
of G0 [28] always converges to the physical solution. This
suggests that summations of bare diagrammatic series
are intrinsically more reliable than those of skeleton
expansions.
Purely mathematically, even if a skeleton series con-

verges, its convergence to the correct answer is not
guaranteed. This is because it does not converge absolutely
[29] at any coupling owing to the factorial number of terms
in each order. For such a (conditionally convergent) series,
the Riemann series theorem states that reordering its terms
can make it converge to any given number (or diverge).
The skeleton series is, in fact, the result of reordering of
the corresponding bare series (see, e.g., [14]). From this
perspective, it is natural that the bare and the skeleton
expansions converge to different answers, while the bare
one is more robust being, in essence, the standard Taylor
expansion inU. To our knowledge, our findings are the first
observation of this possibility realized.
We start by addressing the existence of the functional

Σ½G� [30]. Whenever a nonperturbative solution G½G0�
is available for all possible G0, as, e.g., for single-site
models, the inverse relation G0½G�, and hence, Σ½G� ¼
G0½G�−1 −G−1 can be computed in practice using an
iteration scheme. Thus, we attempt to compute Σ½G� for
the simplest model with the Hubbard interaction, the
Hubbard atom, Hat ¼ Un↑n↓, and for G equal to the
exact solution GðexactÞ ≡GðexactÞðzÞ ¼ ½1=ðzþU=2Þ þ
1=ðz −U=2Þ�=2 (with z ¼ iωn on the Matsubara axis).
In this case, the physical self-energy and the bare GF are

given by: ΣðexactÞðzÞ ¼ U2=4z andGðexactÞ
0 ðzÞ ¼ 1=z. To this

end, we employ the following protocol: Starting from a

guess GðnÞ
0 , we find a certain GðnÞ½GðnÞ

0 � for the single-site
problem using an interaction-expansion continuous-time
quantum Monte Carlo solver [31] implemented with the
TRIQS [32] toolbox. The next approximation for G0 is
obtained with two schemes, A and B, given by

½G−1
0 �ðnþ1Þ ¼ ½G−1

0 �ðnÞ � ðGðexactÞ−1 − ½G−1�ðnÞÞ: ð3Þ

In scheme A, the þ sign is used for all Matsubara
frequencies, while in scheme B, − is used for the lowest
Matsubara frequency and þ for all the other ones. At
convergence, both schemes coincide with Dyson’s equation
for the exact solution GðexactÞ: G−1

0 ¼ GðexactÞ−1 þ Σ; they
are iterated untilGmatchesGðexactÞ with arbitrary accuracy.
Strikingly, we observe that schemes A and B converge to

two different solutions, the expected GðexactÞ
0 ½GðexactÞ� and a

drastically different GðunphysicalÞ
0 ½GðexactÞ�. One can explicitly

verify that both solutions satisfy the correct map G0 → G.
This establishes, in a nonperturbative manner, that this map

FIG. 1. Formal definition of Φ½G� and Σ½G� as skeleton
diagrammatic expansions. The bold lines represent the full
interacting GF G and the dashed lines the interaction vertex.
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is not invertible, and that the functional Σ½G� has at least
two branches. We emphasize that we have tried other
inverting methods, but all of them reproduced the results of
either scheme A or B, suggesting that there are likely only
two branches.
The result is illustrated in Fig. 2(a) [throughout the

Letter, we use the units of the Hubbard model with the
hopping t ¼ 1], showing the double occupancy D ¼
hn↑n↓i ¼ trΣGðexactÞ=U for both solutions. The unphysical
nature of the second solution is clearly seen in the
corresponding D, which grows with U. The two branches
cross at a single value of the interaction U�. We observe
that, by using scheme A, we follow the physical branch for
U < U� and the unphysical branch for U > U�. Scheme B
appears to have the opposite behavior, but it was impossible
to converge the results close to U�. Moreover, our results
suggest that the unphysical branch could exist down to
small U—possibly even U ¼ 0—but the solution becomes
increasingly singular at U → 0, and we could not converge
our results for U ≲ 2.
The Matsubara-frequency dependence of Σ for both

solutions is compared in Fig. 3. The perturbative high-
frequency tails match. However, at U > U�, jΣðunphysicalÞj

becomes small at low frequencies, instead of diverging as
the exact solution does [33]. At U < U�, ΣðunphysicalÞ is
clearly pathological, in view, e.g., of the nonmonotonicity
at low iωn.
It is worth noting that other pathologies and limitations

of the LWF have been reported, e.g., in Refs. [34–36]. In
the latter, it was found that δΣ½G�=δG diverges at certain
discrete points in the parameter space. The immediate
connection of this observation to our results is unclear and
left for future work.
We now turn to the question of what happens to the

skeleton diagrammatic series for Σ½GðexactÞ� in this case.
DiagMC [21,22] allows us to address it by a direct unbiased
summation of the series to sufficiently high order. Partial
sums of the series in terms of GðexactÞ for the Hubbard atom
are plotted in Fig. 3 up to order 8 (the highest accessible
with our computing resources). Despite the pathology of
Σ½G�, the series appears convergent for all the values of U
we considered at least at moderately low temperatures. We
identify three typical qualitative regimes: (i) for U < U�,
the skeleton series clearly converges to the correct solution;
(ii) for U ∼ U�, the convergence becomes slow and it is
unclear which solution the series converges to since the two
solutions are close in this regime, and (iii) for U > U�, the
skeleton series exhibits fast convergence to the unphysical
solution, the higher the value of U the faster the con-
vergence. Remarkably, for reasons so far unclear, this
convergence behavior follows that of the iterative scheme
A, Eq (3). On the other hand, the bare series in terms of

GðexactÞ
0 always yields ΣðexactÞ for the Hubbard atom already

at the second order—all the other diagrams exactly cancel
in this case—which is a well-known analytic result. As an
independent check of consistency of the map G0 → G, we
have verified by DiagMC that the bare series in terms of

GðunphysicalÞ
0 converges to ΣðunphysicalÞ.
Because of the universal nature of the LWF, these

surprising results are not a unique feature of the Hubbard
atom. We examined the single-impurity Anderson model
with a conduction band described by a flat density of states
on the interval ½−1; 1� and an energy-independent hybridi-
zation V ¼ 1 for different values of the interaction U and
the doping δ. We first find the numerically exactGðexactÞ for
a given set of parameters using the impurity solver. This GF
is then used in the iterative scheme A. Figure 2(b) reports
the difference jDðexactÞ −DðfoundÞj which quantifies the
remoteness of the found solution from the exact solution
in terms of the double occupancy. The manifold in the
space of parameters where jDðexactÞ −DðfoundÞj disappears
corresponds to the intersection of the two branches,
dividing the parameter space into two qualitatively distinct
regions: at larger values of U around δ ¼ 0, scheme A
converges to the unphysical solution (with a critical doping
increasing with U), while it converges to the correct
solution at small U and large δ. We note that, near the

(a) (b)

FIG. 2 (color online). (a) Hubbard atom: Double occupancy vs
interaction at T ¼ 0.5, for the physical and unphysical branches
(see text). (b) Anderson impurity: jDðexactÞ −DðfoundÞj, quantify-
ing the difference between the exact solution and that found by
scheme A (see text), in the U-δ plane at T ¼ 0.5. Black points
(crosses) are converged calculations, while at the red points
(circles) scheme A could not converge.

FIG. 3 (color online). Hubbard atom: Two solutions for
Σ½GðexactÞ� and convergence of the corresponding skeleton (bold)
expansion, Fig. 1, at half filling, T ¼ 0.5 and various U.
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boundary between the regimes, the convergence of scheme
A becomes extremely slow. We have also performed
DiagMC calculations for several points on Fig. 2(b),
showing that the skeleton series in terms of GðexactÞ always
converges to the same solution as the iterative scheme A,
except close to the boundary, where the diagram conver-
gence also becomes slow, adding to the remarkable
conspiracy. Hence, Fig. 2(b) can be viewed as the con-
vergence diagram for the skeleton series. The qualitative
shape of the diagram is expected to be shared by all the
models with the Hubbard interaction in view of the
universality of the LWF.
Our DiagMC simulations of the bare series for the

self-energy in terms of GðexactÞ
0 show that, whenever we

can access sufficiently high orders to reach convergence,
the bare series converges to the exact solution ΣðexactÞ in
both regions of the diagram.
We complete our study with the most interesting case of

the Hubbard model on the square lattice, for which the self-
energy acquires nontrivial momentum dependence. At half
filling, reliable benchmarks are available from unbiased
diagrammatic determinant Monte Carlo (DDMC) calcula-
tions [37]. We use the full GF GðexactÞ obtained by DDMC
as an input for the DiagMC summation of the skeleton
series for Σ. In parallel, we employ DiagMC to sum the
corresponding bare series. The results are compared in
Fig. 4, showing the momentum dependence of Σ at the
lowest Matsubara frequency ω0 ¼ πT at fixed T ¼ 0.5 and

various interaction strengths. The qualitative behavior is
identical to that observed in the single-site models. We see
that the bare series reproduces the DDMC benchmark for
Σðk;ω0Þ within the error bars for all the interaction
strengths considered (admittedly, convergence as a function
of diagram order becomes slower at larger U). On the
contrary, the skeleton series reliably converges to the
correct solution only at U ¼ 2, while at U ¼ 8, it displays
fast convergence to an almost momentum-independent
function, drastically different from the exact solution. At
the intermediate U ¼ 4 the convergence of the skeleton
series becomes slow, very similar to the case in the second
panel of Fig. 3, suggesting that the value of U is close
to the crossing point U� between the two branches. Unlike
the single-site case, we have no means of accessing the
unphysical branch of Σ½G� other than by summing the
skeleton series explicitly.
Interestingly, the map G0 → G is known [17] to be

invertible if G0 is constrained to the form ½G−1
0 �ij ¼

iωn þ μ − tij (with i; j the lattice sites). Consistently,

ourGðunphysicalÞ
0 contains an additional frequency-dependent

hybridization Δ, ½GðunphysicalÞ−1
0 �ij ¼ iωn þ μ − tij −

ΔijðiωnÞ. It is unclear, however, how this can be used to
render the skeleton series convergent to ΣðexactÞ since Σ½G�
has no explicit dependence on G0. In practical diagram-
matic calculations [14], when GðexactÞ is unknown, G is
found by (iteratively) solving the Dyson equation G−1 ¼
G−1

0 − Σ½G� with true G0 ≡GðexactÞ
0 . Clearly, in the regimes

where the series for Σ½GðexactÞ� converges to the unphysical
branch, Σ½GðexactÞ� ≠ ΣðexactÞ, the calculation cannot yield
the correct answer GðexactÞ. Provided there are no obvious
pathologies in the unphysical Σ, which is the case in the
examples considered here, identifying that the obtained
G is wrong may be practically impossible in some
computation schemes without an a priori benchmark.
To summarize, we have demonstrated that the LWF for

the Hubbard interaction has at least two branches, possibly
everywhere in parameter space. The branches cross along a
manifold, dividing the space of parameters into the “weakly
correlated” region, where the skeleton series converges to
the physical solution, and the “strongly correlated” region,
where the skeleton series converges to the unphysical
branch [as qualitatively described by Fig. 2(b)] [38]. We
emphasize that the strongly correlated region does not
need to be the insulating regime of the system—the
skeleton series for the Anderson model can converge to
the unphysical branch even in the correlated metallic state.
The boundary between these regions is characterized by an
increasingly slow convergence (possibly divergence) of the
skeleton series. In contrast, we have found that the bare
series, in terms of the noninteracting GF G0, is insensitive
to this boundary and converges to the physical branch in
both regions, although stronger interactions require

FIG. 4 (color online). 2D Hubbard model: Convergence of the
skeleton (bold) and bare series for the momentum dependence
of Σ at the lowest Matsubara frequency at half filling, T ¼ 0.5.
The solid (dashed) lines are ReΣ (ImΣ), the widths express the
corresponding error bars.
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increasingly high orders to claim the converged result.
At large interactions, it eventually becomes impossible to
reliably extrapolate to the infinite-order limit, and new
developments are needed to be able to reach higher
expansion orders.
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