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We study transport through a quantum dot in the fractional quantum Hall regime with filling factors
ν ¼ 2=3 and ν ¼ 5=2, weakly coupled to the leads. We account for both injection of electrons to or from the
leads, and quasiparticle rearrangement processes between the edge and the bulk of the quantum dot.
The presence of neutral modes introduces topological constraints that modify qualitatively the features of
the Coulomb blockade (CB). The periodicity of CB peak spacings doubles and the ratio of spacing between
adjacent peaks approaches (in the low temperature and large dot limit) a universal value: 2∶1 for ν ¼ 2=3
and 3∶1 for ν ¼ 5=2. The corresponding CB diamonds alternate their width in the direction of the bias
voltage and allow for the determination of the neutral mode velocity, and of the topological numbers
associated with it.
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Coulomb blockade (CB) conductance oscillations in
small quantum Hall islands are proven to be a useful tool
to study the structure of the edge modes. Early experiments
[1,2] performed in the integer quantum Hall effect (QHE)
regime were instrumental to demonstrate the presence of
compressible and incompressible stripes along the edge
[3,4]. Various generalizations to tunneling through a
quantum dot in the fractional quantum Hall regime have
been proposed [5,6].
More recent effort has been focused on the nature and

structure of the fractional QHE edges at composite filling
factors such as ν ¼ 2=3 [7–11], ν ¼ 5=2 [9,12–14], and
other filling fractions [15]. Early models of the ν ¼ 2=3
edge [8] posited that the current is carried by two edge
channels, each having the characteristics of a ν ¼ 1=3 edge
state. Other models [16] introduced counterpropagating
edge channels corresponding to ν ¼ 1 and ν ¼ −1=3.
These models yield a Hall conductance which is not
quantized and is nonuniversal, and do not explain certain
experimental facts [17]. Following Wen’s [18] description
of the ν ¼ 1=3 fractional QHE edge Kane, Fisher and
Polchinski considered the composite ν ¼ 2=3 edge [19].
They showed that the two original counterpropagating
modes are strongly mixed by both disorder and intermode
interaction. Under fairly general conditions such mixing
results in the emergence of a forward 2=3 charge mode
along with a backward moving neutral mode. The latter
carries energy (heat), but no electric charge. While neutral
modes have been detected in various setups [9,10,15],
understanding the full implications of the physics
involved, and characterizing their topological numbers,
remains a major challenge. This task gained significant
urgency since the structure of the edge modes provides
an insight into the possible non-Abelian nature of the

ν ¼ 5=2 anti-Pfaffian state [20,21], explored for quantum
information purposes [22].
It was suggested [23] that the pattern of the CB peaks as

well as thermopower measurements [24] in a QHE island
with the composite filling fraction may be used to detect
the presence of neutral modes. In particular it has been
argued that CB peak spacing exhibits a slight period
doubling in ν ¼ 2=3 state [7,24,25]. A more complicated
modulation of CB peak structure was predicted for
other fractions [26], including ν ¼ 5=2 (the structure will
then depend on the exact nature of the ground state
[20,21,27,28]).
The present Letter focuses on the structure of CB

diamonds (i.e., nonlinear source-drain conductance) along
with the peak spacing in composite fraction QHE dots.
As opposed to previous studies, here we study the direct
consequences of quasiparticle exchange between the edge
and the bulk of the quantum dot. Our main findings are the
following. (i) We show that, under rather general assump-
tions regarding the electrostatic energies of the dot, such
edge-bulk exchange leads to a distinct universal pattern of
CB diamonds as well as peak spacing. In particular, we find
that for ν ¼ 2=3 the CB peak spacing tends to a universal
2∶1 ratio between odd and even states in the limit of a large
dot. At the same time the Coulomb diamonds are wider
in the source-drain voltage directions (i.e., larger gap)
between closely spaced peaks and narrower (i.e., smaller
gap) between remotely spaced peaks, Fig. 3. (ii) The width
of the Coulomb diamonds in the source-drain bias provides
direct information on the velocity of the neutral modes, and
on the topological numbers (so-called zero modes) asso-
ciated with the latter. (iii) We carry out a similar analysis for
ν ¼ 5=2 systems. Assuming an anti-Pfaffian state [20,28],
we find a tendency (in the limit of large dot) towards a
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universal 3∶1 ratio between odd and even states, and a
similar (though distinct) pattern of CB diamonds
as well.
Consider an (almost) isolated 2D island of QHE liquid

confined by electrostatic gates [1], Fig. 1. It contains an
integer number of electrons N. If the external magnetic
field is such that the Landau level filling factor is a fraction,
e.g., ν ¼ 2=3, the bulk of the dot has a correlated ground
state separated from the excitation spectrum by a gap. The
only low energy excitations are those localized along the
edge [18,19]. There may be more than one type of such
edge excitations having different charges and velocities [7].
For a macroscopic sample all edge modes are gapless,
while for a closed dot they acquire a small gap which scales
as vh=R, where v is the mode velocity, h is its scaling
dimension, and R is the radius (or rather circumference=2π)
of the dot. Imagine now varying the gate voltage, thus
increasing the effective area of the dot and consequently the
number of flux quanta penetrating it. Provided the number
of electrons, N, remains unchanged, this would decrease
the filling factor ν. As a result, it either creates fractionally
charged quasiparticle (actually quasihole) excitations in the
bulk of the dot or on its edge [23]. Which of the two is
favorable depends on the ratio between the charging energy
of a quasiparticle in the bulk, and the edge gap mentioned
above. An important observation is that this balance
depends on the gate voltage and may abruptly flip upon
an adiabatic variation of the latter. This is the mechanism of
the quasiparticle exchange between the bulk and the edge at
fixed N, central to our discussion.
Upon further variation of the gate voltage, it may become

energetically favorable to move one electron from the lead
to the dot. If two leads are attached, Fig. 1, a current may
flow through the dot under a small source–drain voltage.
This is reflected in a sharp rise of the linear conductance at
certain gate voltages, known as CB peaks. It is important to
notice that it is an electron, and not a fractionally charged
quasiparticle, which is exchanged between the dot and
the leads. The positions of the CB peaks are sensitive to the
energy cost of accommodating an additional electron. The
latter depends on the way the electron is decomposed onto
fractionally charged edge modes and bulk quasiparticles.
To be specific, consider a quantum dot in the ν ¼ 2=3

QHE regime. If the dot is sufficiently large, disorder and
interactions lead to the formation of charge and neutral

modes [19], described by the bosonic fields ϕρ and ϕn

correspondingly [the charge density is given by
ρc ¼ ν1=2∂xϕρ=ð2πÞ]. Under these conditions, the
elementary edge excitations are given by a triplet of
quasiparticles and a doublet of electrons, described by
the operators [19,24]

Ψqp
1;� ¼ e�iϕn=

ffiffi

2
p
eiϕρ=

ffiffi

6
p
; q ¼ 1

3
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p
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3
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where we have indicated the corresponding electric
charge, q, and the scaling dimension of the neutral modes
hn. The ðl; mÞ indices in Ψqp=e

l;m are quantum numbers of
the neutral modes, classified according to representations
of SUð2Þ1 algebra [19]. The operatorsΨqp

l;m are responsible
for exchange of the quasiparticles between the bulk and
the edge of the dot, while the operators Ψe†

1;� create an
electron (which is injected from the leads) at the edge.
The state of the dot may be characterized by three

numbers (N; q; l): the integer net number of electrons, N,
which have tunneled to the edge from the lead(s), the
charge, q, which is moved to the edge from the bulk (equals
to an integer times one third), and the number of neutral
(zero mode) excitations at the edge (we will consider
l ¼ 0;�1). The energy of the dot is thus given by

EðN; q; lÞ ¼ Ecq2 þ
vρ
R
ðN þ q − ~VgÞ2 þ

vnhn
R

l2; ð2Þ

where Ec ¼ e2=2C is the bulk charging energy (often
ignored in the literature [23]), ~Vg ¼ CgVg=e is dimension-
less gate voltage, and vρ=n is the velocity of the charge/
neutral edge mode, vn < vρ. Hereafter we shall assume
that the bulk charging energy and neutral mode gap is
smaller than the kinetic energy of the charge mode
Ec; vnhn=R < vρ=R. This is the case, if the linear size of
the dot 2πR is larger than its distance to the gate, d: the dot
capacitance is C ∝ L2=d. In writing Eq. (2) we have also
assumed that the gate is much more strongly coupled to the
edge, than to the bulk of the dot. This is indeed the case in
most experimental setups.
At some gate voltage, hereafter taken to be ~Vg ¼ 0, the

ground state of the dot is labeled as (0,0,0). Upon varying
the gate voltage, ~Vg, the energy of the dot increases
quadratically as vρ ~V

2
g=R—the (black) parabola centered

at ~Vg ¼ 0 in Fig. 2—denoted as (0,0,0). One may expect
that the ground state follows this parabola until it becomes
energetically favorable to move an electron from the lead to

n 

FIG. 1 (color online). A quantum dot in the ν ¼ 2=3 regime.
The two renormalized edge channels represent the charge mode
(dashed line, black) and the neutral mode (solid line, red). The
bulk of the quantum dot is represented by a puddle (green).
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the edge, utilizing, say, the operatorΨe†
1;þ. This would bring

the dot to the state (1,0,1)—the (blue) parabola centered at
~Vg ¼ 3=3 (the state is double degenerate since Ψe†

1;− can be
used instead). The crossing between these two parabolas,
marked by a (purple) square, takes place at ~Vg ≳ 1=2 at a
rather high energy of the order vρ=R. According to this
logic [24], the next time the electron tunnels it is with
the aid of Ψe†

1;− at ~Vg ≲ 3=2, bringing the system to the
(nondegenerate) state (2,0,0)—the (green) parabola cen-
tered at ~Vg ¼ 6=3. This state is equivalent to the initial
(0,0,0), with two added electrons. As a result the CB
periodicity corresponds to two electrons, as first realized in
Ref. [7]. The odd-even peak spacing modulation scales as
vn=vρ < 1, and is expected to be small [24].
We note, however, that quasiparticle exchange between

the edge and the bulk qualitatively modifies the sequence
outlined above. Starting again from the (0,0,0) state and
varying the gate voltage voltage ~Vg, one arrives at the point
where moving one quasiparticle from the bulk to the edge
becomes advantageous. Removing a quasiparticle from the
edge is achieved with the aid of operators such asΨqp†

1;þ . The
latter brings the system to the state (0, 1=3, 1). We note that
this change of the system’s ground state involving edge-
bulk charge rearrangement can be observed using a

sensitive charge detector. Since in all experiments the gate
voltage is varied adiabatically, the system is bound to
follow its lowest energy state, which involves such a
quasiparticles exchange. Following the (0, 1=3, 1) state,
the system arrives at the point [a (blue) circle in Fig. 2],
where an electron enters from the lead (N is changed by 1),
while a charge 2=3 quasiparticle returns into the bulk. The
corresponding composite operator Ψqp

0;0Ψ
e†
1;− brings the

system into the state (1,−1=3, 0). It does have an additional
electron, but contrary to the scenario outlined above, does
not involve neutral mode excitation. As a result, the only
energy to pay is for a 1=3 charge in the bulk, which is the
smallest energy scale here. The system then proceeds
through a sequence of states which differ by quasiparticle
rearrangements between the bulk and the edge. First to the
(1,0,1) state with the aid of Ψqp†

1;þ , then to (1, 1=3, 0) state

with the aid ofΨqp†
1;− . Only then it becomes advantageous to

bring in yet another electron from the lead and return the
2=3 quasiparticle to the bulk with the composite operator
Ψqp

0;0Ψ
e†
1;þ, making a transition to the state (2, −1=3, 1).

Finally moving another quasiparticle from the bulk with
Ψqp†

1;− , the cycle is complete, and the system arrives at the
(2,0,0) state.
Once again, the CB period is two electrons, in agreement

with Refs. [7,24]. The CB peaks, however, are positioned at
markedly different locations vis-á-vis the gate voltage
variation. In the limit Ec ≪ vρ=R the latter tend to ~Vg ≈
1=3; 5=3; 7=3; 11=3;… Hence, one approaches the
universal 2∶1 ratio of odd–even CB peak spacings. One
may argue that, since the electron tunneling is now
accompanied by edge-bulk rearrangement, the peak con-
ductance scales as a higher power of temperature and is
rather small. While this is a valid argument, notice that,
upon adiabatic tuning of the gate voltage, the system has no
choice, but to follow its true ground state. Thus the only CB
peaks which may be ever observed are those where the
ground state changes its number of electrons by one.
Although the source-drain conductance happens to be small
at this location, no other CB peaks could be reached in an
adiabatic measurement, no matter how small the bulk-edge
exchange rate is.
Possibly more interesting than the 2∶1 peak spacing, are

the characteristics of the CB diamonds. The latter are
observed in the nonlinear regime upon the application of a
finite source-drain voltage VSD. For a fixed gate voltage
away from a CB peak, say ~Vg ¼ 0, the linear source-drain
conductance is exceedingly small. It stays small until VSD
reaches the energy of an excited state which differs from the
ground state by the addition of one electron. For ~Vg ¼ 0 the
simplest of such excited state (1, 0, �1) has a rather high
energy ðvρ þ vn=4Þ=R. However, there are other excited
states contributing to nonlinear source-drain conductance at
substantially smaller voltage VSD. In addition to electron

FIG. 2 (color online). Energy spectra and quantum numbers in
the CB ν ¼ 2=3 quantum dot. Parabolas, plotted vs the (nor-
malized) gate voltage, are characterized by three quantum
numbers, (N; q; l): the total number of electrons, the charge
moved from the edge from to the bulk, and the number of neutral
zero mode excitations. Each value of N is represented by a
parabola centered at that N and same-color satellite parabolas,
which are shifted horizontally and vertically. Coulomb blockade
peaks are obtained at the crossing of different color (different N)
parabolas. The CB peaks occur at (blue) circles. The shaded area
between the ground state curve and the first excited state
corresponding to a different value of N (different color parabola),
describes Coulomb diamonds (cf. Fig. 3).
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tunneling from the lead, they involve the bulk-edge
exchange of quasiparticles. Examples of such states are
(1, −1=3, 0), (1, −2=3, �1), and (1, −3=3, 0). The latter
(with energy Ec) is the lowest excited state. The energy
difference between the N ¼ 1 (dashed blue) [or N ¼ −1
(dashed red)] lowest excited state and the N ¼ 0 (black)
ground state (shown in blue shade) corresponds to the range
of VSD with vanishing differential conductance (cf. Fig. 3),
i.e., a CB diamond. For N-even ground states, i.e., between
narrowly spaced CB peaks, the source-drain width of the
diamond is about the bulk charging energy, Ec. Let us turn
now to the regions of N-odd ground state, e.g., N ¼ 1
(blue). The current carrying excitations are now states with
N ¼ 0 and N ¼ 2. It is easy to see that the lowest energy
ones are (0, 2=3, 0) (dashed black) and (2, −2=3, 0) (dashed
green). Their excitation energy in the middle of the
diamond, i.e., ~Vg ¼ 3=3, is 4Ec=9þ vρ=9R − vn=4R,
typically smaller than in N-even ground states. The
width of the small triangles centered around ~Vg ¼ �3=3
is δ ~Vg ¼ REc=ð3vρÞ þ 1=3 − 3vn=4vρ. One can therefore
determine all three energy scales Ec, vρ=R and vn=R from
the shape of CB diamonds.
We now briefly outline details and results of a similar

analysis for the anti-Pfaffian (APF) state [23,26,30–32],
believed to be a candidate for the ground state of the 5=2
fraction [27,28]. Because of its non-Abelian nature the
electron and quasiparticle operators carry Klein factors,
(σ; I; ϵ), [33,34] with nontrivial fusion rules. These factors
select a possible sequence of transitions which an initial
ground state may undergo upon changing the gate voltage
along with the degeneracy of corresponding states [26].
The set of the operators Ψqp=e

l;m is [27,28]

Ψqp
1;�1 ¼ σe�iϕn=

ffiffi

4
p
eiϕρ=

ffiffi

8
p
; q ¼ 1

4
; hn ¼

3

16
;

Ψqp
0;0 ¼ Ieiϕρ=

ffiffi

2
p
; q ¼ 2

4
; hn ¼ 0;

Ψe
2;�2 ¼ Ie�iϕneiϕρ

ffiffi

2
p
; q ¼ 1; hn ¼

1

2
;

Ψe
2;0 ¼ ϵeiϕρ

ffiffi

2
p
; q ¼ 1; hn ¼

1

2
; ð3Þ

supplemented by the fusion rules: ϵ × ϵ ¼ I, ϵ × σ ¼ σ and
σ × σ ¼ I þ ϵ, [33,34].
Upon varying the gate voltage the initial ground state,

labeled as (0,0,0) and I, gives way to the internally
rearranged σ double-degenerate state (0, 1=4, �1),
Fig. 4, obtained by transferring a quasiparticle to the bulk
with the operator Ψqp

1;�. The latter is succeeded by the
nondegenerate I state (0, 1=2, 0), obtained by moving yet
another quasiparticle with the operator Ψqp

1;∓. Only then it is
energetically favorable to bring an external electron and
move another quasiparticle with the help of eitherΨe

2;0Ψ
qp
1;�,

or Ψe
2;�2Ψ

qp
1;∓, leading to a 4 times degenerate σ state. This

marks the position of the first CB peak. The cycle is then
completed by successively moving two more quasiparticles
to the bulk by going through (1,0,2) and (1, 1=4, 1). The
latter then allows us to bring the second electron and to
move back a quasiparticle, arriving at I state (2, −1=2, 0).
This completes the two electron periodicity cycle. As seen
in Fig. 4, the distance between successive CB peaks
approaches a 3∶1 ratio. Similarly to the 2=3 case, the
corresponding CB diamonds are narrow in the source drain
direction in between the distant CB peaks and wider in
between the closely spaced peaks.
To conclude, we have analyzed CB in quantum dots with

composite structure of the edge modes. We have shown that
the presence of neutral modes leads to distinct features
visible both in linear and nonlinear conductance measure-
ments. In particular, the sequence of linear response CB
peaks exhibits double periodicity with the universal peak

FIG. 3 (color online). Schematic CB diamonds for ν ¼ 2=3.
The green regions denote regions with zero conductivity [29],
while the purple areas represent regions of parameters where the
conductance is finite, but small since charge transfer involves
both lead-edge and edge-bulk processes. Note the energy
(voltage) scales that depend on vn=L.

FIG. 4 (color online). Energy spectra, quantum numbers
(N; q; l), and Klein factors (σ; I; ϵ) for ν ¼ 5=2. Degeneracy of
various states are indicated. The CB peaks occur at (red) circles.
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distance ratio. The shape and size of nonlinear CB
diamonds, on the other hand, offer a way to measure edge
modes’ velocities for both charge and neutral edge
excitations.
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