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A new phase field crystal (PFC) type theory is presented, which accounts for the full spectrum of solid-
liquid-vapor phase transitions within the framework of a single density order parameter. Its equilibrium
properties show the most quantitative features to date in PFC modeling of pure substances, and full
consistency with thermodynamics in pressure-volume-temperature space is demonstrated. A method to
control either the volume or the pressure of the system is also introduced. Nonequilibrium simulations
show that 2- and 3-phase growth of solid, vapor, and liquid can be achieved, while our formalism also
allows for a full range of pressure-induced transformations. This model opens up a new window for the
study of pressure driven interactions of condensed phases with vapor, an experimentally relevant paradigm
previously missing from phase field crystal theories.
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In the study of materials, modeling nonequilibrium
phase transformations is crucial and requires capturing
atomic length features, while remaining consistent with
Thermodynamics at long length and time scales. Toward this
goal, phase field crystal (PFC) modeling [1] has recently
emerged as an efficient and mathematically accessible
option, incorporating the thermodynamics of phase trans-
formations and most salient solid state properties, including
elastoplastic deformations and grain boundaries, all on
diffusive time scales [2]. Extensions to the original model
have been applied to complex structural transformations in
pure materials [3,4], multicomponent alloys [5], and the
study of solid-liquid and solid-solid transformations [6–8].
To date, however, most PFC modeling has considered

only liquid-solid or solid-solid transitions at fixed average
density, a situation that severely precludes the applicability
of the PFC paradigm to problems related to the interaction
of condensed phases with vapor. A method to model such
systems was introduced [9], but it is not derived from a
single order parameter and precludes a description of the
critical point. In this Letter, we introduce a new, more
fundamental PFC-type theory of pure substances, which
accounts for the full spectrum of solid-liquid-vapor tran-
sitions within the framework of a single density order
parameter. Our formalism is shown to be fully consistent
with thermodynamics in pressure-volume-temperature
space, while inheriting the features of previous PFC
models. It also naturally accounts for different anisotropies
and nucleation barriers for vapor-solid and liquid-vapor
systems. We additionally introduce a method to control
either the volume or the pressure of the system. As a
demonstration, we show an application in pressure-driven
phase transformations.
Consider classical density functional theory (c-DFT)

[10,11]: Let ρðrÞ be a field representing the atomic density
of an interacting liquid. The free energy of such a liquid is

generally written as Fcdft½ρ�=ðkBTÞ ¼ Fid½ρ� þ Φ½ρ� where
Fid is the energy of an ideal gas and Φ the contribution due
to interactions. Φ is then treated by functional expansion
around a reference density ρ̄, in a power series of
n ¼ ðρ − ρ̄Þ=ρ̄, and interactions are described by a
sequence of n-point correlations CðnÞðr1; ::; rnÞ. While
these correlation functions are not known in general, a
truncation of the series to second order along with a suitable
ansatz of Cð2Þ has been shown to separately describe both
vapor-liquid interfaces [12] or solidification problems [10]
with success. PFC methods additionally rely on an expan-
sion of the ideal free energy around n ∼ 0, to create what
one may call a “smooth atom” approximation [13–16] of an
atomic density field. While the atomic density interpreta-
tion is lost, the order parameter field n still exhibits spatial
variations and retains numerous crucial features of the
c-DFT atomic density.
To overcome the limitations of two-point correlations on

multiphase behavior, we introduce here a theory that relies
on higher order correlations. Consider the van der Waals
theory for the liquid vapor transition [17]. Its improvement
to the ideal gas law is based on two simple mean-field
postulates: the attraction between particles is proportional
to the average surrounding density, and each particle
proportionally reduces the free volume available to other
particles. At the field theory level for the spatially
varying coarse grained field ρ, such improvements can
be described by the free energy FVdW ½ρ�=ðkBTÞ¼
Fid−

R
dr½ρmf lnð1−ρmfbÞþða=kBTÞρ2mf�, where ρmfðrÞ ¼R

drχðr − r0ÞρðrÞ is a local spatial average of the density
field ρ, with χ a local smoothing kernel. In the limit of a
fully uniform field, setting ρ ¼ ρmf ¼ N=V reduces this
free energy to the standard van der Waals free energy,
where a and b, respectively, control the magnitude of the
attraction and repulsion between atoms. This formulation
lends itself to an interesting c-DFT interpretation. Indeed,
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expanding it around a reference density generates a power
series in ρmf, that we may interpret as a series of correlation
functions. In the following, we introduce a formulation that
incorporates all the qualitative contributions from the
van der Waals theory into the free energy of the standard
PFC-expanded formalism. In addition of an expanded ideal
free energy, it contains both a sharp two-point kernel and a
set of long-range kernels, which allow for the description of
solid, liquid, and vapor phases from a single microscopic
order parameter field.
Our model uses the following free energy functional

(F ¼ F=ρ̄kBT):

F ½n� ¼
Z

dr

�
nðrÞ2
2

−
nðrÞ3
6

þ nðrÞ4
12

�

−
1

2

Z
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The first line results from the expansion of the ideal gas free
energy Fid½ρ�, while the second line adds a multipeaked
two-point correlation function. The choice of the latter term
determines the structure and properties of the solid phase.
While elaborate choices can be made for this term (to target
specific 2D or 3D structures [3,4]), for simplicity, we
choose a kernel that yields triangular (bcc) structures in 2D
(3D) [1]: Cð2Þðr1 − r2Þ ¼ 1 − r − Bxð1 −∇2Þ2. Here, Bx
controls both the bulk compressibility and the strength
of the anisotropy in the periodic phase, while r acts as
an effective temperature parameter. Vapor-liquid transfor-
mations are controlled by the χð3Þ and χð4Þ functions. These
are effective three- and four-point correlation functions,
given by χð3Þ ¼ ðarþ bÞχðr1 − r2Þχðr1 − r3Þ and χð4Þ¼
cχðr1−r2Þχðr1−r3Þχðr1−r4Þ, with χðkÞ¼exp½−k2=ð2λÞ�
in reciprocal space. χ affects low k modes, only picking
up density contributions at long wavelengths. The a, b, and
c parameters determine the bulk properties of the uniform
phases, while λ affects surface energetics. We present the
qualitative physics of the model here, while the study of
interface energies will be discussed elsewhere.
Substituting a uniform nðrÞ ¼ n0 into Eq. (1) yields a

Landau free energy in terms of no for uniform phases
(liquid or vapor). This is shown in Fig. 1. For simplicity,
only 2D results are presented here. For nonzero a, b, and c
parameters, at low enough rescaled temperature r, a double
well landscape sets in between liquid and vapor. The
definition of pressure, P ¼ −ðF=V − μn0Þ, gives the bulk
moduli of the uniform phases β ¼ n0ð∂P=∂n0Þ. The vapor
and liquid bulk moduli can be made different by several
orders of magnitude, consistent with physical systems. For
the parameter r ¼ 0.15, βliq ∼ 10−3 in the liquid region,

while in the vapor region, βgas varies between ∼10−4 in
coexistence to ∼10−6 near n0 ∼ 0.001. β vanishes as the
critical point is approached, where the compressibility
diverges with an exponent of ðr − r�Þ−1. The periodic
phase of the functional is treated via a one-mode approxi-
mation [1], leading to a Landau theory in both the average
density and the amplitude of the solid. Minimizing out
the amplitudes gives the solid free energy, a few examples
of which are also plotted in Fig. 1. The phase diagram can
be computed by performing common tangent constructions
on the Landau theory for different pressures. Figure 2(a)
shows the density-temperature-pressure phase diagram of
Eq. (1). It features solid-liquid, solid-vapor, and vapor-
liquid coexistence regions, and is in excellent qualitative
agreement with experimental phase diagrams for pure
materials [17,18]. The vapor-liquid phase separation is
parabolic, due to the expanded nature of the theory. Higher
order long range correlation terms may be added system-
atically to fine-tune this behavior. The pressure-temperature
phase diagram [Fig. 2(b)] also shows a behavior consistent
with experiments. Along with the equilibrium phase
boundaries, Fig. 2(b) also shows analytical estimates for
the metastability regions of the different phases (dashed
lines). Transforming from a metastable to stable phase
requires a nucleation event. Crossing the metastable boun-
daries is associated with the appearance of an unstable
wavelength,which spontaneously triggers the phase change,
as demonstrated below.
Along with the one-mode predictions, Fig. 2 shows

direct simulation results. Simulations involving a periodic
phase were initialized as a slab of one-mode approximation
solid in contact with a uniform phase, at the predicted
respective average densities. Density was evolved in a 200
by 2000 grid point box using Eq. (2) (discussed below)
with a semi-implicit Fourier method, until convergence was
reached [19]. Unless otherwise stated, the grid spacing
dx ¼ a0=10 with a0 the lattice constant, time step dt ¼ 1,

r
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FIG. 1 (color online). Two-dimensional free energy landscapes
(vs average density) for different effective temperatures r.
Uniform phases: continuous lines, periodic phases: dashed.
Black: r ¼ 0.14, blue: r ≈ 0.148 (triple point), red: r ¼ 0.17.
Other parameters: a ¼ 50, b ¼ −19, c ¼ 50, Bx ¼ 0.7.
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λ ¼ 0.21, and Γ ¼ 10 (see figures for other parameters).
Figure 2 shows that the coexistence densities [shown in
Fig. 2(a)] and pressures [shown in Fig. 2(b)] from direct
simulation are in excellent qualitative agreement with our
analytical r-no-P and r-P space calculations, respectively.
Deviations at low average density are in part due to finite
size effects and due to surface energetics not captured in the
phase diagram analysis.
To probe the three-phase kinetics at fixed volume,

another simulation was performed where a uniform liquid
was quenched into solid-vapor coexistence. The metastable
liquid is seeded with a crystal, which grows [Fig. 3(a)].
As the solid depletes the surrounding liquid density, vapor
pockets nucleate in high depletion areas [Fig. 3(b)]. Due
to the different growth rates into liquid and vapor, long
faceted solid branches are created [Fig. 3(c)], and the
resulting structure is a seaweedlike dendrite [Fig. 3(d)].

Changes in system volumeV ¼ dx2NxNy (for a 2DNx by
Ny grid) can be induced bymodifying dx. AsV changes, one
also modifies the average density, no, so that N ¼ n0 · V
remains constant. In practice, this is doneby adding a uniform
density flux JV everywhere such as to recover the correct n0.
To control the system pressure, we derived an equation

of motion for the volume of the system, that is based on a
control algorithm for ω0 ¼ −Ω=V, where Ω is the grand
potential of the system. Applying the first law of thermo-
dynamics to an infinitesimally small volume element,
enclosed in a larger volume: ds ¼ ð1=TÞde − ðμ=TÞdρþ
ðP0=ðVTÞÞdV, where T is the temperature, μ the chemical
potential, s the entropy density of the volume element, e its
internal energy density, ρ the local number density, V the
volume of the whole system, and P0 is an externally
imposed pressure. The natural variables of entropy are e, ρ,
and V, and so changes in δs=δejρ;V , δs=δρje;V , δs=δVje;ρ
drive the system. e and ρ obey conservation equations, but
assuming an isothermal system, their evolution can be
derived from a single density equation, i.e., of the form in
Eq. (2). Volume V, considered as a dynamical variable, is a
nonconserved global variable and therefore depends on
all subelements. To linear order in the driving forces,
∂V
∂t ¼ −M

R
V dr½MVð∂s=∂VÞ þMeð∂s=∂eÞ þMρð∂s=∂ρÞ�

where Me, Mρ and MV are constants that depend on
system variables (e, T, s, V, ρ…), 1=M fixes the time
scale of volume changes, while the integral over the system
volume ensures a response only to global variations. Using
the Gibbs relations, −ð∂V=∂tÞ=M ¼ 1=V

R
V drfMVP0 þ

VðMe −MρμÞg=T. Stationarity, ∂V=∂t ¼ 0, implies that
VðMe −MρμÞ should be consistent with a pressure. This
condition constrains the expressions for MV, Me, and Mρ.
We postulate that MV ¼ 1=ρ̄kB, Me ¼ ðe − TsÞ=
ðρ̄kBV2Þ ¼ f=ðρ̄kBV2Þ, and Mρ ¼ ρ=ðρ̄kBV2Þ, so that the
final evolution equation reads

M
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FIG. 2 (color online). (a) Density-temperature-pressure and
(b) pressure-temperature phase diagrams of model. Solid thick
lines correspond to one-mode calculations. In (a), green: vapor,
blue: liquid, red: periodic coexistence values. Dashed line is the
vapor-liquid spinodal. In (b), dashed lines show metastability
regions. Black dots show average coexistence density [in (a)] or
pressure [in (b)] from isothermal simulations. Model parameters
as in Fig. 1.

FIG. 3. Three-phase dendritic growth. A solid seed (periodic
regions) grows into a metastable liquid (gray uniform areas).
High depletion areas nucleate vapor pockets (black regions).
See [19] for an animation. (a) t ¼ 100, (b) t ¼ 4177,
(c) t ¼ 10293, (d) t ¼ 36797, (e) inset of (d). Scale bar: 20
lattice units. Model parameters: a ¼ 35, b ¼ −12.01, c ¼ 33.5,
Bx ¼ 0.3, n0 ¼ 0.125, Na=ðdx

ffiffiffiffiffi
dt

p Þ ¼ 0.01, r ¼ 0.145.
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∂n
∂t ¼ Γ∇2

�
δF
δn

�
þ Naη; ð2Þ

∂V
∂t ¼ Mðω − P0Þ; ð3Þ

where ω ¼ R
V drð−f þ μρÞ=ðρ̄kBTVÞ emerges as the

adimensional functional generalization of ω0 and P0 ¼
P0=ðρ̄kBTÞ. The noise η is a Gaussian stochastic variable
which satisfies hηðr; tÞηðr0; t0Þi ¼ −∇ · ∇δðr − r0Þδðt − t0Þ,
with Na the noise amplitude. Equation (3) is effectively
a simple control loop which increases or decreases the
volume so that ω matches the externally imposed pressure
P0, a barostat with time scale 1=M.
In the absence of defects or interfaces, ω reduces to

the thermodynamic pressure, but in complex bulk solids
it additionally convolves interface and strain energies. To
demonstrate our formalism, we only consider situations
where, transient states aside, ω tracks pressure. In the
particular case of seeded crystal growth simulations,
interfaces are always present, and the ω integral is therefore
restricted to a bulk region where density is uniform. In all
constant pressure simulations, M=ðNxNyÞ ¼ 2 (unless
otherwise stated), and where the average density increases
(decreases), the initial grid spacing was respectively
dx ¼ a0=8 ðdx ¼ a0=35Þ.
Simulations of pressure induced transformation were

first tested on vapor-liquid systems [Fig. 4(a)]. The initial-
ization is done in either of the uniform phases and stabilized
to an initial pressure over 5000 time steps, using Eqs. (2)
and (3) with Γ ¼ 10 on a 10082 grid. The target pressureP0

is then ramped up or down continuously, at a rate of
�2.7027 × 10−10. Because of fluctuations (Na=ðdx

ffiffiffiffiffi
dt

p Þ ¼
0.01), the starting phases stay metastable for as long as their
compressibility stays positive, before spinodaly decompos-
ing to the equilibrium phase [changes along orange lines
in Figs. 4(a) and 4(a) inset (ii)]. To illustrate equilibrium
transitions, metastable phases are seeded with the equilib-
rium phase (radius of 300 grid points), while pressure is
monitored in the surrounding bulk. Pressure controlled
growth follows [up or down arrows and Fig. 4(a) inset (i)].
Once the system is converted, it relaxes at a controlled
average pressure.
The vapor-solid transition was tested in a similar manner

[Fig. 4(b)]. Using M=ðNxNyÞ ¼ 15, the vapor phase
pressure is continuously increased into the solid region,
at a rate of 7.375 × 10−11 up to P0 ¼ 0.00012 and then a
rate of 2.48866 × 10−8 to P0 ¼ 0.01. As the vapor crosses
its metastability region, it spinodally decomposes to a
liquid. The liquid then stays metastable until the crystal
wavelength becomes unstable, spontaneously triggering
another phase change into solid [lower orange line in
Figs. 4(b), and 4(b) inset (ii)]. Equilibrium vapor-solid
growth is induced by introducing a circular solid seed into
the metastable vapor, just past the vapor-solid transition line

[upward arrow and Fig. 4(b) inset (i)]. The seed first relaxes
to a hexagon and controlling the vapor pressure then leads
to a slow layered growth. If the target pressure is below the
equilibrium vaporization temperature, the seed sublimates
(downward arrow). Due to the absence of unstable boun-
daries, defects or noise, the bulk solid cannot be vaporized
by under pressurizing it (topmost orange line). Well below
the equilibrium vaporization point, vapor pockets can
remain metastable for a long time due to pinning effects.
The new formalism introduced here allows for novel, and

experimentally relevant, applications in solid-vapor growth
to be explored. Our theory captures the thermodynamics
of pure substances excellently, while maintaining a funda-
mental connection with all elastoplastic properties of
solids. The formalism introduced here offers new tools
to model experimental processes in the fields of crystal
growth (chemical vapor deposition or vapor-solid-liquid
growth) or soft matter systems (phase separation in
polymers, polymer crystals, or colloidal suspensions). In
this Letter, we demonstrated how to control pressure by
changing volume; it is straightforward to control pressure
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FIG. 4 (color online). Pressure controlled vapor-liquid
[(a), r ¼ 0.155] and vapor-solid [(b), r ¼ 0.147] transformations.
Thick vertical black line: equilibrium condensation or deposition
point. Dashed green, blue, or red lines: average density vs
pressure for vapor, liquid, or periodic phases. Continuous orange
lines: system under pressure that is continuously increased or
decreased (arrows show direction, Na=ðdx

ffiffiffiffiffi
dt

p Þ ¼ 0.01). Vertical
black arrows: seeded growth of a stable phase out of a metastable
phase (Na=ðdx

ffiffiffiffiffi
dt

p Þ ¼ 0). Insets show snapshots of the order
parameter. Parameters as in Fig. 3.
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through density changes only, with a suitable replacement
for Eq. (3). While purely technical issues still remain in
regards to controlling pressure directly in complex bulk
solids with interfaces and strain, this does not affect the
theory. Future work will address the deconvolution of
pressure from ω. One approach, for example, is to surround
the system with a separate field describing an atmosphere.
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