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We investigate the superfluid (SF) to Bose-glass (BG) quantum phase transition using extensive
quantum Monte Carlo simulations of two-dimensional hard-core bosons in a random box potential. T ¼ 0

critical properties are studied by thorough finite-size scaling of condensate and SF densities, both vanishing
at the same critical disorder Wc ¼ 4.80ð5Þ. Our results give the following estimates for the critical
exponents: z ¼ 1.85ð15Þ, ν ¼ 1.20ð12Þ, η ¼ −0.40ð15Þ. Furthermore, the probability distribution of the
SF response Pðln ρSFÞ displays striking differences across the transition: while it narrows with increasing
system sizes L in the SF phase, it broadens in the BG regime, indicating an absence of self-averaging, and
at the critical point Pðln ρSF þ z lnLÞ is scale invariant. Finally, high-precision measurements of the local
density rule out a percolation picture for the SF-BG transition.
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Introduction.—The interplay between disorder and inter-
actions in condensed matter systems, while intensively
studied during the last decades, remains today puzzling in
many respects for both experimental and theoretical inves-
tigations [1]. First raised by experiments in the late 1980s
on superfluid 4He in porous media [2,3], the theoretical
question of interacting bosons in the presence of disorder
has been addressed at the same time by several pioneer
works [4–8]. It was then rapidly understood that for two-
dimensional (2D) bosons with repulsive interaction, super-
fluidity is robust to weak disorder.
A breakthrough came with the thorough study of the

critical properties of the quantum (T ¼ 0) phase transition
between superfluid (SF) and localized Bose-glass (BG)
regimes by Fisher et al. [8]. In particular, a generalization of
the Josephson scaling relations [9] was given, thus predict-
ing new critical exponents (see first line of Table I).
Following this work a great endeavor has been made,
using exact numerical techniques such as quantum
Monte Carlo (QMC) simulations [10–26] or the density
matrix renormalization group [27–29], in order to explore
in detail the phase diagram of the disordered Bose-Hubbard
model. Nevertheless, a general consensus regarding the
precisevalues of the critical exponents at the SF-BG transition
is still lacking, despite huge analytical [6,8,30–36] and
numerical [12–20,24–26] efforts.
At the same time a wealth of new experiments have

been developed, using different techniques and setups:
(i) ultracold bosonic atoms in a random potential [37–40];
(ii) strongly disordered superconducting films where pre-
formed Cooper pairs can localize [41–44]; (iii) impurity
doped quantum magnets at high field [45–49]. They all have
shed new light on the problemof boson localization but raised
important theoretical questions, regarding, e.g., the precise
nature of the critical point [32–35], the inhomogeneous
character of the SF and BG phases [41,42,50,51].

In this Letter, we address two important issues of the
Bose-glass problem using the most advanced available
exact numerical technique, namely, the stochastic series
expansion (SSE) QMC method. The quantum critical
behavior at the onset of boson localization and the delicate
estimate of the critical exponents are first discussed. Then
the inhomogeneous nature of the SF and BG phases is
addressed through the study of the probability distribution
of the SF response which shows strikingly different proper-
ties when increasing lattice sizes. Shrinking in the SF
phase, it clearly broadens in the BG regime, thus indicating
the absence of self-averaging [52]. We also demonstrate
that all sites remain compressible, ruling out a percolation
picture. Our conclusions are supported by careful ground-
state (GS) simulations through the so-called β-doubling
scheme, disorder averaging over a very large number of
realizations, detailed error bar evaluation, and systematic
finite-size scaling analysis.
Model and quantum Monte Carlo approach.—We con-

sider hard-core bosons at half-filling on a two-dimensional
square lattice, described by

H ¼ −t
X

hiji
ðb†i bj þ b†jbiÞ −

X

i

μib
†
i bi; ð1Þ

where hopping between nearest neighbors is fixed to
t ¼ 1=2, and the random chemical potential μi is drawn
from a uniform distribution ½−W;W�; i.e., half-filling is
statistically achieved, on average [53]. This model, also
relevant to describe many aspects of strongly disordered
superconductors [4,5,41,42,50,54], exhibits a quantum
(T ¼ 0) phase transition between a Bose condensed SF
and a localized BG regime at sufficiently strong disorder
[13,15,19].
The intrinsic difficulties to simulate with QMC methods

the low temperature properties of such a strongly
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disordered quantum system are twofold: (i) accessing
ground-state properties means very long equilibration
and simulation times; (ii) statistical uncertainties of the
measured physical observables originate from both MC
sampling with NMC steps and random sample to sample
fluctuations with N s samples. Therefore, the simulation
time grows very fast as L2 × β × NMC ×N s which limits
the largest system size L reachable. The strategy we adopt
to tackle this problem, using the SSE algorithm [55], is
as follows (simulation details are discussed in the
Supplemental Material [56]). First we use the β-doubling
scheme to speed up equilibration towards very low temper-
ature [56,58,59], after what we perform for each sample a
number of measurement steps Ns

MC (sample dependent)
large enough that the SF density is efficiently measured
[56]. This procedure is then repeated for a very large
number of disorder realizations N s ¼ Oð104Þ. We have
noticed that GS convergence is in practice extremely hard
to achieve rigorously for all samples, as some samples may
exhibit finite-size gaps smaller than the infrared cutoff of
the β-doubling expansion, which is fixed on average.
Nevertheless, we have checked that intrinsic MC errors
induced by such a slow GS convergence remain smaller
than statistical errors. The results, at βt ¼ 2h with h ¼ 7 for
L ¼ 12 up to h ¼ 9 for the largest sizes, can therefore be
safely interpreted as T ¼ 0 ones [56].

Finite-size scaling.—Motivated by the fact that previous
works disagree on the values of the critical parameters (see
[13,15,19] and Table I), we now discuss our determination
of these parameters by the finite-size scaling approach for
disorder averaged QMC estimates of the SF and Bose
condensed densities.
The ordered regime is characterized by a finite SF

density ρSF, efficiently estimated using the winding number
fluctuations in the QMC algorithm [60]. In the vicinity of
the 2D quantum critical point, the finite-size scaling of the
SF density is

ρSFðLÞ ¼ L−zGSF½L1=νðW −WcÞ�; ð2Þ

where z is the dynamical critical exponent, ν the correlation
length exponent, Wc the critical disorder, and GSF a
universal function.
Beyond the SF response, one can also probe Bose-

Einstein condensation (BEC), occurring in 2D at T ¼ 0
where U(1) symmetry can be broken. The BEC density
ρ0 ¼

P
ijGij=N2, obtained from the equal time Green’s

function [61] Gij ¼ hb†i bji, plays the role of the order
parameter, with a critical scaling

ρ0ðLÞ ¼ L−z−ηG0½L1=νðW −WcÞ�: ð3Þ

Our QMC data are very nicely described by the above
scaling forms, as shown in Fig. 1 for both SF and BEC
densities. Strikingly, BEC and SF densities vanish at the
same disorder strength Wc ¼ 4.80ð5Þ. The values of the
critical exponents are given in Table I. This determination
results from fits of our data set by Taylor expanding the
scaling functions GSF and G0 aroundWc up to an order large
enough that the goodness of fit is acceptable (3rd order in
Fig. 1, see Ref. [56]). We have performed a careful error
analysis using the bootstrap approach in order to estimate
statistical errors of the fit parameters, as well as potential
systematic errors by fitting over various ranges of disorder
strengths and sizes [56]. This results in conservative
uncertainties for the estimates of the critical parameters,
as visible in Table I.

TABLE I. Various estimates of critical exponents and disorder
strength Wc for the 2D SF-BG transition of model Eq. (1), n.a.
not available.

z ν η Wc Reference

2 ≥ 1 ≤ 0 Fisher et al. [8]

0.5(1) 2.2(2) n.a. 2.5 Makivić et al. [13]
2.0(4) 0.90(13) n.a. 4.95(20) Zhang et al. [15]
1.40(2) 1.10(4) −0.22ð6Þ 4.42(2) Priyadarshee

et al. [19]
1.85(15) 1.20(12) −0.40ð15Þ 4.80(5) This work

FIG. 1 (color online). Scaling analysis of the SF ρSF (top) and
BEC ρ0 (bottom) densities. Solid lines show best fits to the
universal scaling functions Eqs. (2) and (3) for the full data set
with z≃ 1.85, WSF

c ≃ 4.8, W0
c ≃ 4.79, zþ η≃ 1.42, νSF ≃ 1.1,

ν0 ≃ 1.2, and GSFj0 3rd order polynomials. The distance from the
critical point Wc ¼ 4.80ð5Þ (grey area), when rescaled by L−1=ν

with ν ¼ 1.2, yields a perfect data collapse (insets).
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We observe a good agreement with the predicted
bounds from Fisher et al. [8] for ν ¼ 1.20ð12Þ ≥ 1 and
η ¼ −0.40ð15Þ ≤ 0. Regarding the more debated question
of the dynamical exponent [32], while still compatible with
z ¼ 2 within error bars our best estimate gives a smaller
number z ¼ 1.85ð15Þ, in agreement with a recent careful
estimate for quantum rotors [25]. Comparing with other
studies in Table I, our results, obtained with much larger
system sizes, agree within error bars with Ref. [15],
whereas results in Refs. [13,19] are probably biased due
to finite temperature effects and too small disorder
averaging.
Distributions and absence of self-averaging in the BG.—

In order to go beyond the analysis of the critical properties
based on disorder averaged observables, we now turn to the
much less studied issue of distributions. The question of a
possible broadening of the responses, linked to the issue
of self-averaging, has not been studied for 2D bosons,
although it may be crucial as discussed for disordered Ising
models [62–64] and strongly disordered superconductors
[41,42,50]. Here we focus on the probability distribution
Pðln ρSFÞ, obtained by building histograms of QMC esti-
mates for ln ρSF over N s independent samples, with N s ≈
2 × 104 for L ≤ 22 and N s ≈ 104 for L ≥ 24, shown in
Fig. 2 for three values of the disorder strength.
In the SF regime [panel (a), W ¼ 4 < Wc] the distribu-

tion narrows upon increasing the size L, thus demonstrating
that the SF response is self-averaging in the ordered phase.
Conversely, as visible in panel (d) for the BG regime at
W ¼ 4.95 > Wc, Pðln ρSFÞ broadens when L increases,
and moves towards large negative values, as expected in the
thermodynamic limit where the SF stiffness vanishes. We
therefore expect a difference between average and typical
SF densities in the BG: as shown in the insets of Fig. 2,
the ratio R ¼ ρavgSF =ρ

typ
SF clearly increases with L in the BG

regime [Fig. 2(d)] whereas it goes to 1 in the SF phase
[Fig. 2(a)]. At the critical point Wc ¼ 4.8 [panels (b) and
(c) of Fig. 2], the histograms first broaden for small sizes
and then, above L ¼ 20 the curves appear self-similar,
simply shifted relative to each other. This absence of
broadening at large scales is also visible in the inset of

Fig. 2(b), where the ratio R tends to saturate to a constant
value. The shift of the distributions can be corrected for by
adding z lnL to ln ρSF using our best estimate z ¼ 1.85.
Indeed, as shown in Fig. 2(c) P½lnðLzρSFÞ� yields a collapse
onto a scale invariant distribution, particularly good
above L ¼ 20.
The fact that all distributions at Wc are identical up to a

shift suggests that, while typical and average SF densities
scale differently in the BG regime, their critical scalings are
described by the same exponents. Indeed, the typical SF
density, defined as ρtypSF ¼ expðln ρSFÞ [where ð� � �Þ stands
for disorder averaging], can be analyzed using a scaling
hypothesis similar to the average Eq. (2), but including
additional irrelevant corrections [65]

ρtypSF ðLÞ ¼ L−zðGtyp
SF ½L1=νðW −WcÞ� þ cL−yÞ: ð4Þ

FIG. 2 (color online). Histogram of QMC estimates for ln ρSF performed overN s ∼ 104 disordered samples for each size L. (a) In the
SF regime W ¼ 4, distributions get narrower with increasing L whereas in the BG phase (d) for W ¼ 4.95 they broaden. At criticality
Wc ¼ 4.8 [(b),(c)] the broadening stops above L ¼ 20 and Pðln ρSF þ z lnLÞ displays a good collapse using z ¼ 1.85. The insets show
the ratio R ¼ ρavgSF =ρ

typ
SF vs system size L.

4.65 4.7 4.75 4.8 4.85
0

0.1

0.2

0.3

0.4

0.5

1 10 100
0.01

FIG. 3 (color online). Typical SF density (a) plotted as ρtypSF × Lz

vsW where the crossing at Wc ¼ 4.8 has a visible drift, captured
by Gtyp

SF ½L1=νðW −WcÞ� þ cL−y with fixed ν ¼ 1.2 and z ¼ 1.85,
and an estimated irrelevant exponent y ¼ 0.97ð4Þ. In panel
(b), ρtypSF =ρ

typ;Wc
SF plotted against LjW −Wcjν exhibits an almost

perfect collapse of the data for 4 ≤ W ≤ 5.5 and 12 ≤ L ≤ 32
with no additional parameters.
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Because of the presence of irrelevant corrections, a fit of
our data set by Eq. (4) with a polynomial GSF is unstable
unless we fix the critical parametersWc, z, and ν to our best
estimates (Table I). The crossing of ρtypSF × Lz vs W plotted
in Fig. 3(a) displays a non-negligible drift, well captured by
irrelevant corrections in Eq. (4) with y ¼ 0.97ð4Þ. A nice
way to achieve a scaling plot for the typical SF density is
then to divide ρtypSF by its value atWc, this in order to cancel
out the irrelevant corrections ∼L−y. Next, a rescaling of the
length L by the correlation length ξ ¼ jW −Wcj−ν with
ν ¼ 1.2 and Wc ¼ 4.8, gives an almost perfect collapse,
without any additional adjustable parameters, as shown in
Fig. 3(b) for 4.0 ≤ W ≤ 5.5 and all available system sizes
12 ≤ L ≤ 32. This demonstrates that the quantum critical
behaviors of average and typical SF densities are similar,
in particular their critical exponents zavg ¼ ztyp ¼ 1.85ð15Þ
and νtyp ¼ νavg ¼ 1.20ð12Þ.
Coming back to the distributions, the drift observed for

the typical stiffness in Fig. 3(a) is related to the transient
(irrelevant) broadening of Pðln ρSFÞ observed at small sizes
in Fig. 2(b). In order to take such a crossover into account
and get rid of irrelevant corrections, we study the broad-
ening of Pðln ρSFÞ using the corrected standard deviation
(StD) ~σln ρSF ¼ σln ρSF − σc, where σc is the StD at criticality.
This is plotted in Fig. 4 vs LjW −Wcjν ¼ L=ξ, where a
very good collapse of the data is achieved without any
adjusted parameters. In the SF regime, ~σ converges towards
−σc as 1=

ffiffiffiffi
N

p
(dashed curve), a consequence of self-

averaging. More interestingly, the BG phase features an
opposite qualitative behavior with ~σ growing with system
size, as ðL=ξÞω (full line). A careful study of such very
broad distributions hits the limits of our numerics, leading
to quite large statistical errors, despite the very large

number of samples N s ¼ Oð104Þ, but nevertheless allows
us to estimate the exponent ω ¼ 0.5ð2Þ. We interpret this
result as follows: The prediction [54] that the stiffness is
dominated by quasi-1D paths suggests that one may
understand the global SF response ρSF as a purely local
quantity in the BG insulator. Moreover, an analogy [42,50]
between the BG and the disordered phase of the random
transverse-field Ising model [62], as supported by recent
1D results [66], suggests that the BG is governed by
directed-polymer physics in dimension 1þ 1 [67]. This
predicts an exponent ω ¼ 1=3 [68] for local quantities
which is compatible with our estimate.
Local density and absence of percolation.—Finally, we

want to discuss some microscopic properties of the insu-
lating BG state. For this we focus on the local bosonic
density ρi ¼ hb†i bii, shown in Fig. 5 in the BG regime
(W ¼ 5) for 16 × 16, at low enough temperature βt ¼ 1024
such that the total number of bosons does not fluctuate (see
Ref. [56]). Clearly, the average behavior is always com-
pressible, which contrasts with the clean case where
the system is incompressible whenever jμj > 2 [69].
Furthermore, the fraction of incompressible sites with
ρi ¼ 0 or 1 decreases with the number of MC steps and
seems to vanish in the exact limit (inset). This shows that
percolation through compressible sites is present even in
the BG phase, at least from such a single particle view, and
is therefore not related to the SF-BG transition, in contrast
with some recent discussions [51,70]. Moreover, our

W=4t

W=4.3t

W=4.6t

W=4.65t

W=4.7t

W=4.75t

W=4.85t

W=4.9t

W=4.95t

W=5t

 ff

W=5.3t

W=5.4t

W=5.5t

1001010.1

0.1 1 10

0.1

1

-2

-1.5

-1

-0.5

0

0.5

1

FIG. 4 (color online). Corrected standard deviation of the
logarithm of the SF response ~σln ρSF ¼ σln ρSF − σc vs system size
in units of the typical length scale ξ ¼ jW −Wcj−ν. In the SF
phase W < 4.8, ~σ tends to −σc as 1=L (dashed line), whereas in
the BG regime W > 4.8, ~σ grows as Lω (full black line) with
ω ¼ 0.5ð2Þ. Inset: zoom on the BG regime.
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FIG. 5 (color online). Local particle (hole) densities ρi (1 − ρi)
plotted vs local chemical potentials jμij. Small blue (orange)
points show QMC results of N s ¼ 150 samples of size 16 × 16

measured at βt ¼ 1024 with NMC ¼ 105 steps. The red data
points show averages over windows of the chemical potential of
size μ̄ − 0.1 ≤ μi ≤ μ̄þ 0.1 and the clean (W ¼ 0) result is
shown by the dashed line, yielding exactly zero for jμj > 2 for
Minðρi; 1 − ρiÞ [69]. The inset quantifies the incompressible
fraction, i.e., the fraction of sites with ρi ¼ 0 or ρi ¼ 1 as a
function of MC steps showing that in the exact limit of infinite
Markov chains the incompressible fraction tends to zero.
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estimates of the critical exponents appear clearly incom-
patible with those of standard percolation in 2D [71].
Conclusions.—Large-scale QMC simulations of the SF-

BG transition supplemented by finite-size scaling show
that SF and BEC densities disappear at the same critical
disorder strength Wc ≈ 4.8, with critical exponents
z ≈ 1.85, ν ≈ 1.2, and η ≈ −0.4. The SF density distribution
becomes infinitely broad upon increasing system size in the
BG insulator, a characteristic signature of the absence of
self-averaging, supporting the fact that the SF density is a
purely local quantity at strong disorder. Our results also rule
out a classical percolation scenario of incompressible sites
in the BG.

This work was performed using HPC resources from
GENCI (Grant No. x2014050225) and CALMIP (Grant
No. 2014-P0677), and is supported by the French ANR
program ANR-11-IS04-005-01 and by the grant NEXT
ANR-10-LABX-0037 in the framework of the Programme
des Investissements d’Avenir.

Note added.—Recently, we became aware of a parallel
work [72], which reaches comparable conclusions.
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