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This Letter presents a rigorous kinetic theory for relativistic runaway electrons in the near critical electric
field in tokamaks. The theory provides a distribution function of the runaway electrons, reveals the
presence of two different threshold electric fields, and describes a mechanism for hysteresis in the runaway
electron avalanche. Two different threshold electric fields characterize a minimal field required for
sustainment of the existing runaway population and a higher field required for the avalanche onset.
The near-threshold regime for runaway electrons determines the time scale of toroidal current decay during
runaway mitigation in tokamaks.
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Introduction.—The importance of runaway electron
production in plasma was recognized more than a half
century ago in a seminal work by Dreicer [1], followed
by enlightening subsequent studies by Gurevich [2]. The
initial nonrelativistic results [1,2] have been generalized to
the relativistic case by Connor and Hastie [3]. Similar to the
previous work, Ref. [3] is based entirely on a diffusive
(small scattering angle) approximation for Coulomb colli-
sions. The missing large-angle (knockon) collisions are
known to be weak compared to the small-angle collisions,
but they can cause an avalanche-type growth of the run-
away population, as pointed out in Ref. [4] and substan-
tiated in Refs. [5,6]. In the absence of an external magnetic
field, the electric field can accelerate runaway electrons
until they reach the pair-production energy range, but in
magnetically confined plasmas the runaway energies are
limited, rather, by synchrotron losses that accompany pitch-
angle scattering. The significance of this mechanism was
first shown in Ref. [7] and then emphasized in Refs. [8,9].
The compelling need to mitigate runaway electrons or to

control their behavior in ITER calls for additional attention
to the abovementioned aspects of the runaway problem:
relativistic energies of the runaways, avalanche mechanism
of the runaway production, and the combined effect of
pitch-angle scattering and synchrotron losses on the run-
away distribution function (this effect was omitted in
Ref. [6]). It is especially important to have an accurate
theory for the near-threshold regime that represents long-
term behavior of the runaways and is critical for the
mitigation process. Even a very strong initial inductive
electric field is reasonably expected to drop down to the
threshold-level values with the growth of the runaway
population. The key questions in that regard are: what is the
threshold electric field and what is the growth rate of the
avalanche when the electric field exceeds the threshold?

The threshold electric field must at least overcome the
collisional friction for ultrarelativistic electrons, which
means that this field cannot be less than

Ec ¼
e3neΛ

4πε20m0c2
: ð1Þ

This expression is commonly referred to as the critical field
for runaway avalanche, but there are strong experimental
indications [10,11] that it actually underestimates the
avalanche threshold considerably, and prior theoretical
work [7] partly attributes the difference to synchrotron
losses. However, the simple dynamical model used in
Ref. [7] to explain the role of synchrotron losses is too
crude for quantitative predictions. To enable such predic-
tions, we now present a systematic kinetic treatment of the
problem, which not only refines the findings of Ref. [7] but
also provides an accurate description of the runaway
distribution function, reveals a mechanism for the hyste-
resis in the evolution of runaways, and explains the effect of
runaways on the current decay process.
Kinetic model.—The rates of the small-angle and large-

angle (avalanche-producing) collisions of runaway elec-
trons differ by the large Coulomb logarithm Λ. Because of
this difference, the avalanche time scale is relatively slow
compared to the small-angle collisional processes, espe-
cially at the later stage of runaway formation or during the
runaway current mitigation. This separation of time scales
suggests a two-step approach to the problems of runaway
production and mitigation in the near-threshold regimes.
We first ignore the large-angle collisions and study the
behavior of preexisting runaways. We then use the dis-
tribution function of the accumulated runaways to predict
their production and loss. To sidestep the discussion of
secondary geometric factors, we consider the runaways in a
uniform fully ionized plasma with a uniform magnetic field
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B and constant electric field E along the magnetic field
lines. The distribution function F satisfies the relativistic
Fokker-Planck equation
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where p is the particle momentum (normalized to mc),
θ is the pitch angle, s is the time variable (normalized
to τ≡ 4πε20m

2
0c

3=e4neΛ), E is the electric field
(normalized to m0c=eτ≡ Ec), and τ̄rad≡ τrad=τ¼
ð6πε0m3

0c
3=e4B2Þð1=τÞ is the normalized time of synchro-

tron losses. The normalization of the distribution function
is given by

R
Fdp sin θdθ ¼ 1. In fully ionized plasmas, Z

is the ion charge, whereas in cold postdisruption plasmas
with impurities, Z should be adjusted to capture the effects
of the fast electron scattering on impurity ions and atomic
nuclei. Also, the expression for τ needs to be generalized to
take into account collisions with the bound electrons. These
generalizations have been discussed in Refs. [12,13].
We note that E is an order of unity quantity and τ is much

less than τrad for the tokamak parameters we are most
interested in. This allows us to drop the last term on the
right-hand side of Eq. (2). We next make a conjecture
(which is internally consistent for the solution we construct,
as can be checked directly afterwards) that the time scale
for pitch-angle equilibration is much shorter than the
momentum evolution time scale in the near-threshold case,
since the momentum convection terms in Eq. (2) (accel-
eration by the electric field and collisional and radiative
drag) are nearly balanced for the electrons of interest when
E is close to the avalanche onset threshold denoted below
as Ea. The angular distribution of the existing runaways
can therefore be found from the condition that pitch-angle
scattering balances the pitch-angle shrinking caused by the
electric field; i.e., the lowest order version of Eq. (2) is

E
p
F þ ðZ þ 1Þ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
p3

1

sin θ
∂F
∂θ ¼ 0; ð3Þ

which specifies the angular part of the distribution function,
so that

F ¼ Gðs;pÞ A
2 sinhA

exp ½A cos θ�; ð4Þ

with

AðpÞ≡ 2E
ðZ þ 1Þ

p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 1

p ; ð5Þ

where A=2 sinhA is the normalization factor for the pitch-
angle distribution and the function Gðs;pÞ still needs to be
determined from Eq. (2). In order to find this function, we
integrate Eq. (2) over all pitch angles, which eliminates the
lowest order terms and gives a one-dimensional kinetic
equation for Gðs;pÞ:

∂G
∂s þ ∂

∂pUðpÞG ¼ 0; ð6Þ

where
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Equation (6) is a continuity equation in the momentum
space with a “flow velocity” defined by Eq. (7) and shown
in Fig. 1 for three different values of the electric field. This
velocity is negative for all momenta if the electric field is
lower than a certain threshold value E0ðZ; τ̄radÞ (dotted
curve in Fig. 1). In other words, any initially created
population of fast electrons will slow down and join the
bulk if E < E0. In contrast, a higher field (E > E0) creates
a finite interval of positive flow velocities (under the solid
curve in Fig. 1), which enables sustainment of fast electron
population in the plasma. In what follows, E0 is referred to
as the sustainment threshold. For E > E0, the flow velocity
vanishes at two equilibrium points (pmin and pmax), of
which the higher momentum point is stable and the lower
momentum is unstable. More specifically, the electrons
slow down and join the bulk if their momenta are less than
pmin, whereas the electrons with larger initial momenta
(p > pmin) move towards pmax and accumulate there, so
that the entire population of fast electrons eventually
concentrates near pmax. In particular, the electrons with
initial momenta higher than pmax, if any, decelerate towards
pmax. It is essential that this process is faster than the rate of
large-angle collisions, which simplifies calculation of the
avalanche growth rate significantly.
The function UðpÞ dictates the applicability condition

for the separation of time scales between the pitch-angle
equilibration and the momentum evolution. The low value
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FIG. 1. The flow velocityUðpÞ defined by Eq. (7) for Z ¼ 5 and
τ̄rad ¼ 70. The values of the electric field E are 1.8 for the solid
curve, 1.7 for the dashed curve, and 1.65 for the dotted curve.
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of UðpÞ (U ≪ p) at pmin < p < pmax ensures that the
momentum evolution is slower than the pitch-angle equili-
bration. This is not the case for p ≫ pmax and p ≪ pmin,
where Eq. (6) becomes inaccurate. However, such electrons
will quickly decelerate toward the region of validity of the
presented solution (if p ≫ pmax) or merge the bulk plasma
(if p ≪ pmin), which enables the prediction of the sustained
distribution function.
Note that the stable point pmax would not exist in the

absence of synchrotron losses, because the stopping power
for ultrarelativistic electrons is nearly constant (we neglect a
weak logarithmic rise of the collisional stopping power
at high energies). The electrons would then accelerate
constantly in a supercritical electric field. Synchrotron losses
introduce a momentum-dependent stopping force, which
precludes unlimited acceleration of the electrons and thereby
sets an upper limit on runaway energies. The sustainment
threshold E0 should not be confused with the critical electric
field Ec determined solely by the collisional friction.
The equilibrium points (pmin and pmax) merge when the

electric field equals E0 (the flow velocity function for this
case is shown by the dashed curve in Fig. 1). This condition
serves as a formal definition of E0. Figure 2 presents the
resulting contour plots for E0 on the ðZ; τ̄radÞ plane (solid
contours). There is also a convenient analytic fit for E0,

E0 ≈ 1þ
ðZþ1Þffiffiffiffiffi

τ̄rad
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
8
þ ðZþ1Þ2

τ̄rad

6

q ; ð8Þ

that has better than 5% accuracy for 1 < Z < 30 and
τ̄rad > 5.
Equation (6) predicts significant peaking of the distri-

bution function near the phase-space attractor at pmax for
the electric fields greater than E0 but still in the E0 range.
This peaking is also observed in a Monte Carlo solution of
Eq. (2) presented in Ref. [12]. A snapshot of the numeri-
cally calculated distribution function in the process of
contraction is shown in Fig. 3. The difference between the
commonly assumed monotonic distribution of runaways,
obtained in Ref. [6], and the peaked distribution should
apparently change the avalanche growth, the likelihood of

wave excitation by the runaway beam, and the runaway
mitigation assessments.
Avalanche growth rate and the hysteresis effect.—The

kinetic model described above allows straightforward
calculation of the avalanche growth rate. Taking into
account the relatively fast electron flow to p ¼ pmax, we
assume that the relativistic factor for all primary electrons
is γ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
max þ 1

p
. Let γ be the relativistic factor of an

electron after collision of the primary electron with an
immobile bulk plasma electron. The differential cross
section for their collision is [14]
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¼ 2πr2e
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where re is the classical electron radius.
Recalling the structure of the velocity flow (7), we

conclude that the after-collision energies of both electrons
need to be greater than γmin ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
min þ 1

p
to produce the

avalanche. This ensures that both electrons will flow to the
stable point γ0 after the collision. The energy conservation
law limits the values of γ for such collisions to γmin <
γ < γ0 þ 1 − γmin. The total cross section for such events is
then σ ¼ R

γ0þ1−γmin
γmin

ðdσ=dγÞdγ, and the resulting growth
rate of the avalanche is
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or, equivalently,
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FIG. 2. The contours of the sustainment field E0 (solid curves)
and the avalanche onset field Ea (dashed curves). FIG. 3 (color online). Snapshot of the runaway electron

distribution in momentum and pitch angle during the decay
process. The pitch-angle parameter is λ≡ sin2 θ.
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The factor 1=2 in Eq. (10) accounts for the fact that each
collision involves two electrons, but only one of them can
be a new member of the runaway population. As seen from
Eq. (11), γmin has to be less than ðγ0 þ 1Þ=2 to develop
an avalanche, so that the avalanche threshold is determined
by the condition γ0 þ 1 − 2γmin ¼ 0. The corresponding
threshold value Ea of the inductive electric field is greater
than E0 (as indicated by dashed contours in Fig. 2).
If the electric field is lower than Ea, then the growth rate

Γ is negative. The large-angle collisions work against the
avalanche in this case, because the final energies of the
colliding electrons can be less than γmin, which forces these
electrons to move away from the γ0 attractor into the bulk.
However, the resulting decay of the fast electron population
is relatively slow (because of the large Coulomb logarithm).
As a result, the finite interval between E0 and Ea enables
long sustainment of the fast electrons without their expo-
nential multiplication. This regime differs significantly
from the predictions of the previous avalanche theory
[6]. Another important difference is that, for the fields
greater than E0, the rate of runaways production is lower
than the one predicted in Ref. [6]. The reason for both
differences is a simplified description of the secondary
electron source in Ref. [6], which assumes extremely high
energies of the primary electrons. The same simplified
source was also used in Ref. [9]. This simplification breaks
down in the near-threshold regime, where finite energy of
the primary electrons needs to be accounted for.
Note that rare large-angle collisions of the attractor

runaways with bulk plasma electrons do naturally create
an accompanying population of lower energy electrons (with
p < pmin). This effect was discussed in Refs. [15,16] as a
candidate for electrical breakdown in atmosphere. The lower
energy electrons are apparent in tokamak experiments, but
their effect on the attractor particles should be relatively
small due to the large Coulomb logarithm.We therefore omit
the discussion of the lower energy electrons in this Letter.
The difference between E0 and Ea creates a hysteresis in

the runaway behavior. If the electric field grows starting
from E < E0, there will be no runaways at E ¼ E0, because
the avalanche does not start until the field reaches Ea. On
the other hand, when the field decreases from E > Ea and
there is already a population of the runaways, the avalanche
stops at E ¼ Ea, but the existing runaways can last as long
as the field remains greater than E0.
Figure 4 presents the avalanche growth rate as a function

of the electric field for Z ¼ 5 and τ̄rad ¼ 70. The solid line
is the growth rate determined by Eq. (11), and the dashed
line represents Eq. (18) from Ref. [6]. We observe that the
two results agree when the electric field is several times
greater than the critical filed Ec. This is consistent with
the fact that the approximate source used in Ref. [6] is
sufficiently accurate at high electric fields when the value
of γ0 is very large and the role of synchrotron radiation
becomes negligible near the unstable point pmin. However,

at lower electric fields, Eq. (18) from Ref. [6] overestimates
the growth rate significantly, and it does not describe the
decay of the runaway population, resulting from large-
angle scattering at E0 < E < Ea.
Note that the approximations used to solve Eq. (2) in the

near-threshold regime apparently breaks down at large
electric fields, but the avalanche growth rate there is
insensitive to the near-threshold subtleties, which explains
why Fig. 4 shows close agreement between our calculations
and prior results at large fields. To be perfectly accurate,
the intermediate range in Fig. 4 should be understood as a
sensible interpolation.
It is instructive to compare our kinetic results with the

predictions of a truncated dynamical model proposed in
Ref. [7]. This model suggests a set of two coupled ordinary
differential equations for the average relativistic factor and
the pitch-angle parameter. It involves a simplifying con-
jecture that one can capture interesting qualitative trends
by first neglecting all higher moments of the runaway
distribution function. Although the dynamical model of
Ref. [7] exhibits formation of the phase-space attractor and
captures the global pattern of the electron flow in phase
space, the value of the threshold electric field obtained from
this model is not quite accurate, due to the arbitrariness of
the truncation procedure. We also find that the dynamical
model (if used for the avalanche growth rate calculation)
would give an overestimated value, as shown in Fig. 4.
Our kinetic approach is free from these weaknesses.
Current decay.—The runaway avalanche threshold is of

primary importance with regard to mitigation of the run-
aways. The mitigation process involves dissipation of the
stored magnetic energy, and the time scale of this process is
typically much longer than the characteristic growth time
of the runaway avalanche. This separation of time scales
means that the inductive electric field must be close to the
threshold value E0 at every flux surface where runaways
are present [17]. In a simplified cylindrical geometry, this
condition (together with Maxwell equations) immediately
gives the time derivative of the total current density on
every runaway-occupied surface:
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FIG. 4. Avalanche growth rate predicted by Eq. (11) (solid
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and the growth rate inferred from the dynamical model of Ref. [7]
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∂r ; ð12Þ

where we now use SI units for all quantities including E0.
We herein ignore the difference between E0 and Ea,
because it is relatively small compared to E0, as seen in
Fig. 2. On every other (runaway-free) flux surface, the
electric field must be lower than E0 and governed by the
bulk plasma conductivity σ. Equation (12) can then be
generalized to
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; ð13Þ

where H is the Heaviside step function. We observe that
the threshold field E0 sets an upper limit for the rate of
magnetic energy dissipation and thereby determines the
shortest possible time for the total current decay. A rough
estimate of this time is

τmin ∼
μ0I
E0

: ð14Þ

We also note that this estimate is insensitive to the energy
spectrum of runaway electrons and that the decay should
be linear in time [as seen from Eq. (12)] if the runaways
occupy most of the plasma cross section and the threshold
field does not evolve significantly during the decay process.
The expected decay rate and linear time dependence
appears to be consistent with what is usually seen in the
mitigation experiments [18] if one allows for additional
(vessel) inductance that extends the decay time.
Summary.—The presented rigorous theory demonstrates

that the electric field for runaway avalanche onset is higher
and the avalanche growth rate is lower than previous
predictions. The new theory predicts peaking of the run-
away distribution function at the phase-space attractor and
the existence of two different threshold fields that produce a
hysteresis in the runaway evolution. These findings open a
possibility for improved interpretation of the corresponding
experiments, including interpretation of the x-ray and
synchrotron emission measurements. The existence of
threshold electric fields for sustainment and growth of
the runaway population explains the time evolution

of the total toroidal current in the runaway mitigation
experiments.
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