
Natural Inflation and Quantum Gravity

Anton de la Fuente,1 Prashant Saraswat,1,2,* and Raman Sundrum1

1Department of Physics, University of Maryland, College Park, Maryland 20742, USA
2Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA

(Received 30 January 2015; published 14 April 2015)

Cosmic inflation provides an attractive framework for understanding the early Universe and the cosmic
microwave background. It can readily involve energies close to the scale at which quantum gravity effects
become important. General considerations of black hole quantum mechanics suggest nontrivial constraints
on any effective field theory model of inflation that emerges as a low-energy limit of quantum gravity, in
particular, the constraint of the weak gravity conjecture. We show that higher-dimensional gauge and
gravitational dynamics can elegantly satisfy these constraints and lead to a viable, theoretically controlled
and predictive class of natural inflation models.
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The success of modern cosmology is founded on the
simplifying features of homogeneity, isotropy, and spatial
flatness of the Universe on the largest distances. In this
limit, spacetime evolution is given in terms of a single scale
factor, aðtÞ, and its Hubble expansion rate, H ≡ _a=a.
Homogeneity and flatness are themselves puzzling, con-
stituting very special “initial” conditions from the view-
point of the hot big bang (HBB). But they become more
robust if the HBB is preceded by an even earlier era of
cosmic inflation, exponential expansion of the Universe
driven by the dynamics of a scalar field ϕ (the “inflaton”)
coupled to general relativity (see [1] for a review)

H2 ¼ 8πGN

3
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_ϕ2 þ VðϕÞ
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ϕ̈þ 3H _ϕþ V 0 ¼ 0: ð1Þ
(We work in fundamental units in which ℏ ¼ c ¼ 1.
GN is Newton’s constant.) If “slow roll” is achieved for
a period of time, _ϕ subdominant and VðϕÞ ≈ const, we
get a ∝ eHt; H ≈ const, after which the potential energy
is released, “reheating” the Universe to the HBB.
Phenomenologically,N e-folds > 40–60 are required to under-
stand the degree of homogeneity or flatness we see today.
Remarkably, quantum fluctuations during inflation can

seed the inhomogeneities in the distribution of galaxies and
in the cosmic microwave background (CMB). In particular,
the CMB temperature fluctuation power spectrum,

Δ2
SðkÞ∝knsðkÞ−1; k≡wavenumber; ns≡ spectralindex;

ð2Þ

is generically predicted by inflation to be approximately scale
invariant, ns ≈ 1, and is measured to be ns ≈ 0.96 [2,3].
Slow roll itself requires an unusually flat potential,

suggesting that the inflaton ϕ is a pseudo-Nambu-
Goldstone boson of a spontaneously broken global Uð1Þ

symmetry, an “axion.” [Note that the axion Uð1Þ symmetry
also suppresses couplings to curvature which would, other-
wise, give rise to the “eta problem” [4].] If there is a weak
coupling that explicitly violatesUð1Þ symmetry by a definite
amount of charge, one can generate a potential

VðϕÞ ¼ V0

�
1 − cos

ϕ

f

�
; ð3Þ

wheref is a constant determined by the spontaneous breaking
dynamics, while V0 is a constant proportional to the weak
coupling. This is the model of “natural inflation” [5]. [The
fine-tuning of the two terms in Eq. (3) to obtain a (nearly)
vanishing vacuum energy relates to the notorious cosmologi-
cal constant problem [6], which we do not address here.]
The duration of inflation in this model scales as N e-folds ≲
ðf=MplÞ2. Natural inflation can be successfully fit to data, in
particular N e-folds > 50; ns ≈ 0.96, for parameters [3]

f > 2 × 1019 GeV ≈ 10Mpl

V0 > ð2 × 1016 GeVÞ4 ≈ ð10−2MplÞ4: ð4Þ
The Planck scale Mpl ≡ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p ¼ 2 × 1018 GeV is the
energy scale above which quantum gravity (QG) effects
become strong, and effective field theory (EFT) must break
down in favor of a more fundamental description such as
superstring theory [7].
The very high energy scale V1=4

0 ≈ 0.01Mpl is without
precedent in observational physics and implies sensitivity
to new exotic phenomena. For such large inflationary
energy densities, quantum graviton production during
inflation gives rise to a tensor/scalar ratio of the CMB
power spectrum of r ∼ 0.1. Indeed, observations by the
BICEP2 experiment initially suggested a signal at this level
[8], although further studies [9,10] and a combined analysis
with the Planck experiment [11] indicate that the excess is
consistent with galactic foregrounds. Regardless, future
cosmological observations including searches for tensor
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modes [12] have the potential to provide information about
physics at the highest energy scales.
However, the proximity of the QG scale raises concerns

about the validity of effective field theory treatments of
inflation and susceptibility to poorly understood QG effects.
There are, broadly, two approaches to addressing such QG
uncertainties in high-scale inflation models. One is to derive
inflationary models directly within known superstring con-
structions, which provide reasonably explicit UV descrip-
tions of QG. Such constructions feature many moduli fields
(for example, describing the size and shape of several extra
dimensions) whichmust be stabilized andwhich also receive
time-dependent back-reaction effects during the course of
inflation. Consistently constructing and analyzing models of
this type can be an involved and difficult task, and there is, as
yet, no fully realistic top-down derivation. Nevertheless,
considerable qualitative progress has been made on possible
shapes and field ranges of inflaton potentials in string theory
and their effects [13–21].
Alternatively, one can try to construct bottom-up effec-

tive field theory models, incorporating simple mechanisms
that shield the inflationary structure from unknown
QG corrections, aspects of which have been previously
explored in, e.g., [22–31]. However, studies of robust
quantum properties of large black hole solutions in general
relativity, as well as many string theory precedents, strongly
suggest that there are nontrivial constraints on effective
field theory couplings in order for them to be consistent
with any UV completion incorporating QG, which make
inflationary model building challenging. In this Letter, we
will discuss the impact of such black-hole/QG consider-
ations in the context of natural inflation, in particular the
role of the weak gravity conjecture (WGC) [32]. While
these considerations rule out some inflationary models, we
demonstrate for the first time that there do exist simple and
predictive effective theories of natural inflation, consistent
with the WGC, where the inflaton arises from components
of higher-dimensional gauge fields. The advantage of the
effective field theory approach is twofold: (i) the models
have a minimal field content, whose dynamics can be
analyzed quite straightforwardly and comprehensively, and
(ii) the small number of fundamental parameters in the
models can be realistically fit to the observed data. We
believe that such a higher-dimensional realization yields the
most attractive framework for cosmic inflation to date.
Further elaboration of our work will be presented in [33].
Quantum gravity constraints.—Classical black holes can

carry gauge charges, observable by their gauge flux outside
the horizon, but not global charges. Studies of black hole
formation and Hawking evaporation, combined with the
statistical interpretation of their entropy, then imply that
such quantum processes violate global charge conservation
[34,35]. By the uncertainty principle, this holds even for
virtual black holes, implying that at some level global
symmetries such as those desired for natural inflation
cannot coexist with QG. Of course, global symmetries
are seen in a variety of experimental phenomena, but these

are accidental or emergent at low energies, while natural
inflation only achieves slow roll for f > Mpl! A loophole is
that 1=f may represent a weak coupling and low-scale
symmetry breaking rather than very high scale breaking.
The mechanism of “extranatural inflation” [22] precisely
exploits this loophole, realizing ϕ as a low-energy remnant
of a Uð1Þ gauge symmetry. The model is electrodynamics,
but in (4þ 1)-dimensional spacetime, with the usual
dimensions, xμ¼0−3, augmented by a very small extradi-
mensional circle, x5 ∈ ð−πR; πR�. The (3þ 1)-
dimensional inflaton is identified with the phase of the
gauge-invariant Wilson loop around the circle

ϕðxμÞ≡ 1

2πR

I
dx5A5ðxμ; x5Þ: ð5Þ

Classically, the masslessness of the Maxwell field, AM¼μ;5,
matches onto VðϕÞ ¼ 0 in the long distance effective
theory ≫ R. But ð4þ 1ÞD charged matter, with charge
g5, mass m5, and spin S, corrects the quantum effective
potential [36,37]

δVðϕÞ ¼ 3ð−1ÞS
4π2

1

ð2πRÞ4
X
n∈Z

cne−2πnRm5Reeinϕ=f

cnð2πRm5Þ ¼
ð2πRm5Þ2

3n3
þ 2πRm5

n4
þ 1

n5
; ð6Þ

where ðe−2πRm5Þ=R4 is a typical (Yukawa-suppressed)
extradimensional Casimir energy density, and the phase
captures an Aharonov-Bohm effect around the circle.
We have written this in terms of the emergent scale

f ≡ 1

2πRg
; ð7Þ

where g is the effective 3þ 1 coupling which matches onto
g5 in the UV. We see that natural inflation structure (with
innocuous harmonics), with f > Mpl, can emerge at a sub-
Planckian compactification scale, 1=R ≪ Mpl, by choosing
weak gauge coupling g ≪ 1.
The requirement g ≪ 1 seems suspiciously close to g ¼ 0,

the limit in which the Uð1Þ gauge symmetry effectively
reverts to an exact global symmetry, at oddswithQG. Indeed,
extranatural inflation runs afoul of a subtle QG criterion
knownas theweak gravity conjecture [32]. (For relatedwork,
see, e.g., [38–44].) TheWGCagain uses universal features of
black holes to provide insights into QG constraints on EFT.
In brief, one argument is as follows. (We will discuss this
and other motivations for theWGC at greater length in [33].)
Reference [35] has shown that in EFTs containing both a
Maxwell gauge field and general relativity, the associated
gauge groupmust be compactUð1Þ, in the sense that electric
charges must be quantized in integer multiples of the
coupling g, in order to avoid other exact global symmetries
and related negative consequences. Then, there exist large
black hole solutions to the Einstein-Maxwell equations
carrying both electric and magnetic charges. These solutions
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are quantum-mechanically consistent if they obey the Dirac
quantization condition, whereby magnetic charges are quan-
tized in units of 2π=g.
All precedent in general relativity and string theory

research (e.g., [45–48]) suggests that black holes are
themselves coarse-grained EFT descriptions of gravita-
tional bound states of more basic components (see
[49,50] for reviews). In particular, magnetically charged
black holes should be “made out of” fundamental magnetic
charges which are themselves not black holes. And yet, this
is impossible for sufficiently small g ≪ 1. The reason is
that Maxwell EFT cannot describe electric and magnetic
charges which are both light and pointlike. Instead, the
magnetic charges must be heavy solitons, with a size 1=Λ,
where Λ < Mpl is the UV energy cutoff of the EFT.
The magnetostatic self-energy in the region outside the
1=Λ-sized “core,” where EFT applies, is then πΛ=ð2g2Þ ≫
Λ the mass mcore within the core is expected to be at least
comparable to this. [By comparison, for weakly coupled
electrically charged point particles, the length scale that sets
the electrostatic self-energy is played by the Compton
wavelength, which is then a small perturbation of the mass,
g2m=ð8πÞ ≪ m.] In order for the soliton to be larger than its
horizon radius 2GNmcore, to avoid being a black hole itself,
we must have

Λ≲ 2
ffiffiffi
2

p
gMpl: ð8Þ

Here, the “≲” reminds us of the Oð1Þ uncertainties in this
argument. This is the WGC. When testing theories of
inflation for parametric control, these Oð1Þ uncertainties
will be irrelevant, but we will be subject to them when
fitting models to precision data.
Requiring the compactification scale to be below the

EFT cutoff, 1=R < Λ, then implies f < Mpl, by Eq. (7),
spoiling minimal extranatural inflation [32,51]. Note that,
even with the Oð1Þ uncertainty in the WGC, we cannot get
parametrically large f=Mpl (i.e., large N e-folds).
Biaxion models.—We now show that we can achieve

inflation subject to the constraints of the WGC by general-
izing to biaxion (extra-)natural inflation, with two axions,
A, B [52–57]. Consider the potential

V ¼ V0

�
1 − cos

A
fA

�
þ ~V0

�
1 − cos

�
NA
fA

þ B
fB

��
; ð9Þ

where N ∈ Z by A periodicity, following from its Nambu-
Goldstone status. For sufficiently large N ≫ 1, we get two
hierarchical eigenmodes. At lower energies than the higher
mass, the second term enforces the constraint

NA
fA

þ B
fB

≈ 0: ð10Þ

Plugging back into V gives an effective potential for the
light mode, ϕ ≈ B

VeffðϕÞ ¼ V0

�
1 − cos

ϕ

feff

�
; feff ¼ NfB: ð11Þ

This model is straightforwardly realized from (4þ 1)
electrodynamics of two Uð1Þ gauge fields [57], AM, BM,
with charges (N; 1) and (1,0), and (4þ 1) masses less than
1=R. Aharonov-Bohm effects analogous to (6) then give
rise to (9), for effective (3þ 1) scalars, A;B defined
analogously to (5), with V0 ∼ ~V0 and fA ¼ 1=ð2πRgAÞ,
fB ¼ 1=ð2πRgBÞ. It is clear that the WGC, (8), can be
satisfied for both gauge interactions, with fA; fB ≪ Mpl,
while still obtaining feff ≫ Mpl, provided N is large
enough. [Ref. [43] claims that there are additional con-
straints from the WGC in theories with multiple Uð1Þ
fields, though this does not follow immediately from our
arguments. If there are n Uð1Þs all with a common
coupling, then [43] claims that WGC bounds become
stronger by a factor of

ffiffiffi
n

p
, which isOð1Þ in our examples.]

Large N also ensures that quantum tunneling of the fields
through the potential barrier from the second term of
Eq. (9) is extremely suppressed.
But in nonrenormalizable ð4þ 1ÞD QED, the UV scale

of strong coupling (and EFT breakdown), Λgauge, falls
rapidly as N increases

Λgauge ¼
8π

N2g2
1

R
: ð12Þ

Minimally, both this cutoff and the WGC cutoff should be
above the compactification scale, 1=R, to remain in
theoretical control. These constraints imply the (paramet-
ric) inequality

feff
Mpl

≡ N
RgMpl

≲MplR: ð13Þ

Since N e-folds scales as ðf=MplÞ2, this biaxion model can
give a parametrically long period of inflation provided N
and MplR are taken sufficiently large while keeping
Ng ∼Oð1Þ. After inflation ends, decays of the inflaton
into the light charged matter will “reheat” the Universe to a
hot big bang with temperature [22,57]

Treheat ≈ :01

ffiffiffiffiffiffiffiffiffiffiffiffi
Mplg3

RN3

s
≲HN −3=4

e-folds: ð14Þ

Radius stabilization.—When (4þ 1) general relativity is
taken into account, R is not an input parameter, but rather
the expectation of a dynamical effective (3þ 1) (“radion”)
field, σðxμÞ

R ¼ Mple
ffiffiffiffiffiffi
2=3

p
hσðxÞi=Mpl : ð15Þ

We show that MplR ≫ 1 can arise naturally, and that the
extra dimension is effectively rigid during inflation. A
suitable σ potential can arise simply via Goldberger-Wise
stabilization [58], in the case where the extradimensional
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circle is further “orbifolded” in half, down to an interval.
(This has the added benefit of projecting out the unnec-
essary (3þ 1) vector components of the gauge field,
without, otherwise, affecting our earlier discussion.) The
stabilization mechanism requires adding a (4þ 1) neutral
scalar field, χ. The energy in this field depends on R,
providing an effective potential for σ

Vradion ∼m2
χM3

5ðc1e2πRmχ þ c2e−2πRmχ Þ ⇒ 2πR ∼
1

mχ
;

ð16Þ

where c1;2 ∼Oð1Þ are determined by χ boundary condi-
tions at the ends of the interval, and M5 is the (4þ 1)
Planck scale. Large R clearly requires small mχ . This [and
the small (4þ 1) cosmological constant that has been
neglected above] can both be natural if the (4þ 1) “bulk”
spacetime preserves supersymmetry (to a high degree).
The potential also gives the radion a mass

m2
σ ∼

1

ð2πRÞ2 ≫ H2; ð17Þ

so that it is not excited during and after inflation.
Precision CMB observables.—CMB observables are

sensitive to even small corrections to the inflationary
potential. An attractive feature of the extradimensional
realizations are that the structure of subleading corrections
is controlled by the higher gauge symmetry. Equation (6)
shows that massive charges decouple exponentially from
the potential, with the extra dimension effectively acting as
a “filter” of unknown UV physics, but they can have
observable effects if not too heavy. Since our effective
theory has cutoffs on its validity given by the WGC, (8),
and strong coupling in the UV, (12), in general, new physics
will appear by (the lower of) these cutoffs, ≡Λ. This may
include new particles with 5D mass M ≈ Λ carrying
charges ðnA; nBÞ, where each charge is plausibly in the
range jnj≲ N. Such charges will create an Aharonov-
Bohm correction to the potential, which after imposing the
IR constraint, (10), yields

δV ∼ V0

ð2πRMÞ2
3

e−2πRM cos ðNnB − nAÞ
ϕ

feff
: ð18Þ

If NnB − nA ≫ 1, this “higher harmonic” gives a
modulating correction to the slow-roll parameter ϵ≡
ðM2

pl=2ÞðV 0=VÞ2

δϵ

ϵ
¼ 2ðNnB − nAÞ

ð2πRMÞ2
3

e−2πRM sinðNnB − nAÞ
ϕ

feff
:

ð19Þ
For this to not obstruct inflation itself requires δϵ=ϵ < 1.
However, the parameter δϵ=ϵ also controls corrections to
the temperature power spectrum in the slow-roll limit,

where the modulating part of the potential is almost
constant during a Hubble time. Such periodic modulations
of the inflationary potential have been searched for in the
CMB data [59–64], most recently motivated by the
possibility of such signals in axion monodromy inflation
[14,61,64]. These results place more stringent bounds,
requiring δϵ=ϵ≲ 1-5%, for NnB − nA in a realistic range
of ∼Oð10–100Þ.
Parametrically, it is easy to check that δϵ=ϵ can be made

arbitrarily small while still satisfying theoretical constraints,
and consistent with largeN e-folds. But this is accomplished at
the expense of takingMplR parametrically large.However, as
seen in (6), 1=R sets the scale ofV0 in natural inflation,which
is bounded by current observations. For example, we can fit
the data, (4), withMplR ¼ 8,N ¼ 42, g ¼ 0.08. Then, if we
have new particles at the cutoff, with M ¼ Λ and charges
½nA ≲OðNÞ; nB ∼Oð1Þ�, we have δϵ=ϵ ∼ 3%. Of course,
from (19), this modulation amplitude is exponentially
sensitive to the value of the mass M, including order one
uncertainties in determining Λ from (8) and (12), but we see
that our parametric success is also numerically plausible in
the real world. Conversely, these estimates also indicate that
the modulation of the primordial power spectrum in this
model could be observable with increased precision, provid-
ing a striking signal of new dynamical scales not present in
minimal models of natural inflation.
Triaxion models.—Our discussion can be straightfor-

wardly extended to triaxion models [53,57,65], where
smaller charge ratios are possible in the extranatural
realization [57]. We find that such models can also satisfy
the WGC, both parametrically and numerically in realistic
models, with a higher and safer EFT cutoff. Consider three
gauge fields A;B;C and three particles with charges
(1,0,0), (NA; 1; 0), (0; NB; 1). NA;NB ≫ 1 implies only one
light field, ϕ, with

feff ¼
NANB

2πRgC
: ð20Þ

We can now fit the data with smaller charges and lower
corrections to the slow-roll parameter; e.g., takingNA;B ¼ 8,
gA;B;C ¼ 0.12, MplR ¼ 8 we obtain δϵ=ϵ ∼ 3 × 10−4.
Chern-Simons model.—The need for specific, large

charges for light (4þ 1) matter may seem somewhat con-
trived. Arbitrary light charges would have effects similar in
form to (18) but without Yukawa suppression, spoiling
inflation. To explore this issue, we modify our extradimen-
sional approach so that these large quantumnumbers become
outputs of the model rather than fixed input parameters. For
simplicity, we first focus on the single Maxwell field, AM,
and replace its coupling to explicit light charged matter by a
Chern-Simons (CS) coupling to a non-Abelian Yang-Mills
(YM) gauge sector [say, with SUð2Þ gauge group]

δLCS;4þ1 ¼
N

64π2
ϵLMNPQGa

LMG
a
NPAQ: ð21Þ
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At this stage, N is still an input parameter, its quantization
enforced now by invariance under large gauge transforma-
tions. In general, Chern-Simons couplings allow gauge
fluxes to play the role of gauge currents; in this case, YM
fluxes act as an AM current. YM instantons can then replace
the role of virtual Aharonov-Bohm effects. This is best seen
by first passing to the (3þ 1) effective theory

δLCS;3þ1 ¼
N

64π2
A
f
ϵμνρσGa

μνGa
ρσ: ð22Þ

This is very similar to the coupling of the Peccei-Quinn axion
to QCD in order to solve the Strong CP Problem: upon YM
confinement [66], we obtain

δL4Deff ¼ V̂0F
�
NA
f

�
; ð23Þ

where F is an order-one 2π-periodic function replacing the
second cosine in (9), and V̂0 is set by the YM confinement
scale. Similar generalizations F ðNAÞ → F ðNAþ BÞ can
replace (9). In this way, we recover natural inflation via
biaxion or triaxion models.
A virtue of the (4þ 1) Chern-Simons model is that it can

be extended to (6þ 1) field theory with a Chern-Simons
coupling, which may be written compactly in differential
form notation as

δLCS;7D ¼ 1

32π2
dA ∧ A ∧ G ∧ G; ð24Þ

such that N does not appear as an input coupling. Instead,
we take the 6th, 7th dimensions to form a small two-sphere,
on which quantized F ¼ dA gauge flux can be trapped. We
will quantize about classical solutions with N flux quantaI

S2
F ¼ N

2π
: ð25Þ

In this way, N defines discrete selection sectors of the
(6þ 1) theory, a “landscape” of perturbatively stable vacua.
Plugging this condition into (24) reduces it to the (4þ 1)
model, (21).
This basic mechanism can be extended to biaxion or

triaxion models. For example, the second term of (9) can be
produced if the A field has a (6þ 1) Chern-Simons
coupling as in (24) while the B field has only a (4þ 1)
coupling of the form in (21) to the same YM gauge sector.
This could occur, e.g., if the B field is localized to a 4-brane
defect. In [33], we will demonstrate that these (6þ 1)
models are also parametrically controlled while being
consistent with the WGC and N e-folds ≫ 1. A key new
feature in the analysis is the dynamical role N plays in
stabilizing the size of the 6-7 sphere.
Let us summarize. Black hole processes and properties

provide a unique window into quantum gravity, placing
tight constraints, such as the weak gravity conjecture, on
effective field theories of inflation. We have demonstrated

that a parametrically large number of e-foldings of high-
scale inflation can be realized by simple multiaxion
generalizations of extranatural inflation, consistent with
these constraints. The resulting models achieve large
gravitational wave signals of r ∼ 0.1 while remaining
realistic and theoretically controlled, and predict potentially
observable modulations of the scalar power spectrum.
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