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We show that the quantum Jarzynski equality generalizes to PT -symmetric quantum mechanics with
unbroken PT symmetry. In the regime of broken PT symmetry, the Jarzynski equality does not hold as
also the CPT norm is not preserved during the dynamics. These findings are illustrated for an
experimentally relevant system—two coupled optical waveguides. It turns out that for these systems
the phase transition between the regimes of unbroken and broken PT symmetry is thermodynamically
inhibited as the irreversible work diverges at the critical point.
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Over the past two decades PT -symmetric quantum
mechanics has established itself as an important area of
modern research. In its original formulation [1] PT -
symmetric quantum mechanics was a rather mathematical
theory with only loose connection to physical reality [2].
However, recent experimental progress has provided a
realization of PT -symmetric systems, which can be under-
stood as systems with balanced loss and gain [2–6]. In
particular, Rüter et al. observed PT symmetry in an optical
system [7], which consists of two coupled waveguides with
modulated refraction indexes.
Around the same time of the first description of PT -

symmetric quantum mechanics [1], Jarzynski achieved a
major breakthrough in thermodynamics of small systems
[8]. The Jarzynski equality, hexpð−βWÞi ¼ expð−βΔFÞ,
allows us to determine the free energy difference for an
isothermal process from an ensemble of nonequilibrium
realizations of the process. Here, β is the inverse temper-
ature, W is the nonequilibrium work, and ΔF is the free-
energy difference. The angular brackets hi denote an
average over all possible work values. Therefore, modern
thermodynamics places special interest on the distribution
of work values PðWÞ, which has been studied extensively,
for instance, in classical systems [9–12] as well as for
quantum systems [13–22].
It was shown that the classical Jarzynski equality can be

generalized to isolated quantum systems [23,24], for which
the thermodynamic work is determined by a two-time
energy measurement [25,26]. In this approach one com-
monly considers the following procedure: a quantum
system is prepared in a thermal Gibbs state; then a
projective energy measurement is performed, before the
system evolves under an externally controlled Hamiltonian
Ht; the procedure is concluded by a second, projective
energy measurement [27].
The present work addresses the following question: Does

the quantum Jarzynski equality together with the two-time
energy measurements generalize to PT -symmetric quan-
tum mechanics? We will find that this is, indeed, the case

for systems with unbroken PT symmetry, whereas for
broken PT symmetry the Jarzynski equality does not hold.
These findings will then be carefully analyzed and illus-
trated for the model describing the optics experiment by
Rüter et al. [7].
We will show that the phase transition between the

unbroken and broken regime has a clear signature in the
behavior of the irreversible work, hWirri ¼ hWi − ΔF. This
is analogous to systems exhibiting quantum phase tran-
sitions [28–30]. However, while quantum phase transitions
are thermodynamically allowed, the transition from unbro-
ken to broken PT symmetry is thermodynamically
inhibited.
Fundamentals of PT -symmetric quantum mechanics.—

We start by briefly reviewing the main properties of PT -
symmetric quantum mechanics. Consider a quantum sys-
tem with non-Hermitian but PT -symmetric Hamiltonian
H; i.e., ½PT ; H� ¼ 0. Here, P is the space reflection
(parity) operator and T is the time-reflection operator
[1,3,31,32],

PxP ¼ −x and PpP ¼ −p;

T xT ¼ x; T pT ¼ −p; and T iT ¼ −i; ð1Þ

where x and p are the position and momentum operator,
respectively. Since T also changes the sign of the imagi-
nary unit i, canonical commutation relations such as
½x; p� ¼ iℏ are invariant under PT . It has been seen
[2,32] that PT -symmetric Hamiltonians generally exhibit
two parametric regimes: a regime of unbroken PT sym-
metry in which all eigenvalues of H are real, and a regime
of brokenPT symmetry for which the eigenvalue spectrum
has real and complex parts.
The major difference between Hermitian and

PT -symmetric quantum mechanics is the definition of the
inner product [31,32]. For Hermitian Hamiltonians we have

hψ1jψ2i ¼ ψ†
1ψ2; ð2Þ
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where, as usual, † denotes conjugate transpose. This inner
product, however, yields indefinite norms for the non-
Hermitian but PT -symmetric case [1,3,31,32]. This can
easily be seen explicitly, for instance, for the system discussed
in the second part of our analysis. Therefore, the inner product
in PT -symmetric quantum mechanics is defined in terms of
the metric operator C as [31,32]

hψ1jψ2iCPT ¼ ðCPT ψ1Þψ2: ð3Þ

In the unbroken regime C can be determined from [31,32]

½C; H� ¼ 0 and C2 ¼ I: ð4Þ

It is worth emphasizing that the time evolution induced by a
time-independent Hamiltonian with unbroken PT symmetry
is unitary, and hence, the norm is preserved, hψ tjψ tiCPT ¼ 1

for all t [31,32].
The metric operator C reminds us of the charge con-

jugation operator from field theory [32]. However, in the
present case C is not necessarily associated with an
observable, but rather defines a physically consistent
theory.
Quantum work for unbroken PT symmetry.—In the

following, we are interested in processes that are induced
by a time-dependent control parameter λt, with Ht ¼
HðλtÞ. We start by considering a driving protocol for
which Ht ¼ HðλtÞ is in the regime of unbroken PT
symmetry at all times. Note that a time-dependent
Hamiltonian Ht also induces a time-dependent metric Ct,
as can be seen from its definition (4). It has been recently
shown [33] that then the generalized Schrödinger equation
reads

iℏ∂tjψ ti ¼ ðHt þAtÞjψi; ð5Þ
where At is a time-dependent gauge field that is necessary
to preserve normalization under the time-dependent metric
Ct. It is given by

At ¼ −
iℏ
2
W−1

t ∂tWt; ð6Þ

where Wt is the transpose of the metric Ct, i.e., Wt ¼ CTt .
Commonly, the thermodynamic work done during a

process of length τ is determined by a two-time energy
measurement [25,26]: at initial time t ¼ 0 a projective
energy measurement is performed; then the system is
allowed to evolve under the generalized time-dependent
Schrödinger equation (5), before a second projective energy
measurement is performed at t ¼ τ. For a single realization
of this protocol, the work is given by

Wjϕmi→jϕni ¼ EnðλτÞ − Emðλ0Þ; ð7Þ

where jϕmi is the initial eigenstate with eigenenergy
Emðλ0Þ and jϕni with eigenenergy EnðλτÞ denotes the final

state. The distribution of work values is given by averaging
over an ensemble of realizations of the process, PðWÞ ¼
hδðW −Wjϕmi→jϕniÞi, which can be written as [20,34]

PðWÞ ¼ ⨋
m;n

δðW −Wjϕmi→jϕniÞpðjϕmi → jϕniÞ: ð8Þ

In the previous equation, the symbol ⨋ accounts for
discrete and continuous parts of the eigenvalue spectrum.
Without loss of generality, we assume here that the
spectrum is discrete, but see also Ref. [20].
In Eq. (8), pðjϕmi → jϕniÞ denotes the probability to

observe a specific transition jϕmi → jϕni. This probability
is given by [20,34]

pðjmi → jniÞ ¼ trfΠnUτΠmρ0ΠmU
†
τg; ð9Þ

where ρ0 is the initial density operator of the system andUτ

is the unitary time evolution operator,

Uτ ¼ T > exp

�
−
i
ℏ

Z
τ

0

dtðHt þAtÞ
�
: ð10Þ

Here, T > is the time-ordering operator and Πν denotes
the projector into the space spanned by the νth eigenstate.
For the sake of simplicity, we further assume that all
spectra are nondegenerate, for which we simply have Πν ¼
ϕνðCtPT ϕνÞ [35]. Hence, Eq. (9) can be written as

pðjϕmi → jϕniÞ ¼ ðCτPT ϕnÞðUτϕmÞ
ðC0PT ϕmÞðρ0ϕmÞðCτPT UτϕmÞϕn: ð11Þ

Now, let us assume that the system under study was initially
prepared in a Gibbs state; namely, we have

ρ0ϕm ¼ ½expð−βEmÞ=Z0�ϕm; ð12Þ

where Z0 ¼ trfexpð−βH0Þg is the partition function. Then,
we compute the average exponentiated work,

hexpð−βWÞi¼
Z

dWPðWÞexpð−βWÞ

¼
X
m;n

expð−βEnþβEmÞpðjϕmi→ jϕniÞ: ð13Þ

Substituting Eqs. (11) and (12) into Eq. (13) and using the
CPT normalization of the initial eigenstate ϕm,
ðC0PT ϕmÞϕm ¼ 1, we have

hexpð−βWÞi¼ð1=Z0Þ
X
m;n

expð−βEnÞ

×ðCτPT ϕnÞðUτϕmÞðCτPT UτϕmÞϕn: ð14Þ

We further employ the CPT -symmetric partition of the
identity I ¼ P

νψνðCtPT ψνÞ, which is invariant under
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unitary evolution [32], and the CPT normalization of the
final eigenstate ϕn. Hence, we obtain

hexpð−βWÞi ¼ Zτ=Z0 ¼ expð−βΔFÞ; ð15Þ

where F ¼ −ð1=βÞ lnðZÞ is the free energy. In conclusion,
we have shown that the quantum Jarzynski equality (15)
remains valid for quantum systems with unbroken PT
symmetry, and for which the time evolution is described by
the generalized Schrödinger equation (5).
Regime of broken PT symmetry.—What remains is to

check whether Eq. (15) is also valid in the regime of broken
PT symmetry. Analogous to the unbroken regime, the
initial energy eigenstate can always be chosen to be CPT
normalized. Therefore, the treatment of the broken regime
is identical to the above discussion, if we replace the
definition of C in Eq. (4) by [36]

fC; Hg ¼ 0 and C2 ¼ I: ð16Þ

Comparing Eq. (4) with Eq. (16), we observe that in the
regime of unbroken PT symmetry the metric operator C
commutes withH, whereas in the broken regime the metric
operator anticommutes with the Hamiltonian H [37]. In
addition, the time evolution in the broken regime ceases to
be unitary as the energy spectrum contains a complex part.
Therefore, even when including a gauge field in the
generalized Schrödinger equation (5) to account for
time-dependent metrics (6), norms are not preserved. In
particular, we have

P
mψmðCτPT ψmÞ ≠ I, with

ψm ¼ Uτϕm, if the time-evolution operator Uτ is not at
least unital [34,38–40]. A unital map is a trace preserving,
completely positive map, under which the identity is
preserved, and that can be written as a superposition of
unitary maps [41].
In conclusion, it becomes apparent by inspecting

Eq. (14) that the quantum Jarzynski equality together with
the two-time energy measurement approach does not hold
under broken PT symmetry.
PT -symmetric Jarzynski equality in optics.—The

remainder of this discussion is dedicated to a careful
analysis and illustration of the above findings for an
experimentally relevant example. In a recent experiment,
Rüter et al. showed that PT -symmetric quantum mechan-
ics can be realized in optical setups [7]—two coupled
waveguides, of which only one is optically pumped. The
optical-field dynamics is described by [7]

i∂zE1 ¼
iγ
2
E1 − κE2;

i∂zE2 ¼ −
iγ
2
E2 − κE1; ð17Þ

where E1;2 are the field amplitudes in the waveguides, κ is
the coupling constant, and γ is the gain coefficient due to

the optical pumping. Identifying the spatial coordinate
with a time variable z ¼ t=ℏ, the dynamics of a PT -
symmetric quantum system is “frozen” in the profile of the
field amplitudes. In particular, we can identify the
Hamiltonian as

HðαÞ ¼ κ

�
iα −1
−1 −iα

�
; ð18Þ

where we introduced the new parameter α ¼ γ=2κ. Note
that this Hamiltonian belongs to the class of two-level
systems discussed extensively in the literature [3,31,32].
With the parity operator,

P ¼
�
0 1

1 0

�
; ð19Þ

and noting that T performs only complex conjugation here,
one easily convinces oneself that HðαÞ (18) is, indeed, PT
symmetric. The eigenenergies are given by

ϵ1;2 ¼ �κ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
; ð20Þ

from which we conclude the regime of unbroken PT
symmetry, α ≤ 1, and the broken regime is α > 1.
It is then a simple exercise to determine the eigenstates

and the metric operator C. We obtain in the unbroken
regime for the eigenstates

jϕun
1 i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

pp
�
e−ði=2Þ arcsinðαÞ

eði=2Þ arcsinðαÞ

�
;

jϕun
2 i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

pp
�

eði=2Þ arcsinðαÞ

−e−ði=2Þ arcsinðαÞ

�
; ð21Þ

with which we obtain

Cun ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
�−iα 1

1 iα

�
: ð22Þ

Similarly, we have for α > 1 in the broken regime,

jϕbr
1 i ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − 1

pp
�

eð1=2ÞarcoshðαÞ

ie−ð1=2ÞarcoshðαÞ

�
;

jϕbr
2 i ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − 1

pp
�
e−ð1=2ÞarcsinhðαÞ

ieð1=2ÞarcoshðαÞ

�
; ð23Þ

and for the metric operator

Cbr ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − 1

p
�−i α

α i

�
: ð24Þ

Finally, we assume the system to be driven externally by
varying the parameter αt. This is motivated by the optics
experiment of Ref. [7], where one would change the optical
pumping, i.e., vary the gain coefficient γ. Such a driving
could be implemented in the setup [7] by modulating the
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refraction index over the length of the waveguide.
Projective measurements could be realized by measuring
the amplitude and phase of the field at both ends of the
waveguides.
For broken as well as for unbroken PT symmetry, the

gauge field At (6) reads

At ¼ −
iℏ

2ðα2t − 1Þ
�

0 −i _αt
i _αt 0

�
: ð25Þ

Equations (18)–(25) are all the ingredients necessary to
compute the quantum work distribution [Eq. (8)] explicitly.
For the sake of simplicity we further assume that αt is

changed linearly from an initial value α0 to a final value α1
during time τ,

αt ¼ α0 þ ðα1 − α0Þt=τ: ð26Þ
In Fig. 1 we plot the irreversible work,

hWirri ¼ hWi − ΔF; ð27Þ
as a function of the final value α1 for a system that starts in
the regime of unbrokenPT symmetry—namely, α0 ¼ 1=2.
We observe that hWirri is always non-negative, as it should
be as an expression of the second law of thermodynamics,
and that hWirri diverges at the critical point, α1 ¼ 1. Similar
behavior has been observed for quantum phase transitions
[42], where the irreversible work can be interpreted as a
quantum susceptibility. Diverging susceptibilities are a
common feature of quantum critical points [43].
However, in quantum phase transitions the irreversible
work usually exhibits a singularity; i.e., after passing
through the transition hWirri drops back to a finite value
[42,43]. In the present case hWirri diverges, signifying a
quantum critical point, but stays at infinity even after
passing through the phase transition. In other words, the
phase transition is thermodynamically “inhibited,” as the
system’s response “freezes out.” The inset of Fig. 1.

illustrates the validity of the quantum Jarzynski equality
for systems with unbroken PT symmetry [Eq. (15)].
Figure 2 shows the same quantities, but for a system

starting in the regime of broken PT symmetry; here,
α0 ¼ 3=2. The first observation is that hWirri has real
and imaginary parts. This is no surprise as the quantum
work is defined as an average over differences of eigene-
nergies (7). In the broken regime, however, the eigenen-
geries are complex (20), and thus hWirri also has to be
complex. This signifies the failure of the two-time meas-
urement approach to describe the thermodynamics of
systems with broken PT symmetry. Nevertheless, we also
observe that the absolute value of the irreversible work
diverges at the critical point, α1 ¼ 1, and that also the
transition from broken into unbroken regime is thermody-
namically inhibited. Finally, the inset illustrates the (com-
plex) violation of the quantum Jarzynski equality, which is
in full agreement with the general theory above—the
quantum Jarsynki equality does not hold if the dynamics
is not unital [34,38–40].
Concluding remarks.—In the present work we have

shown how the quantum Jarzynski equality generalizes
to PT -symmetric quantum mechanics. We have found
that for quantum systems with unbroken symmetry
the Jarzysnki equality holds, while this is not the case in
the broken regime. The crucial requirement is that the
dynamics is at least unital. Hence, in time-dependent
PT -symmetric quantum mechanics the Schrödinger equa-
tion has to be generalized including a gauge field so that all
norms are preserved during the driving.
These findings have been further analyzed for an exper-

imentally relevant system. We have illustrated that the
PT -symmetric Jarzynski equality could be experimentally
studied in optical setups consisting of two coupled

FIG. 1 (color online). Irreversible work hWirri [Eq. (27)] for the
linear protocol [Eq. (26)] and α0 ¼ 1=2, which is a system
starting in the regime of unbroken PT symmetry. Parameters are
β ¼ 1, ℏ ¼ 1, τ ¼ 1, and κ ¼ 1. The inset illustrates the validity
of the PT -symmetric Jarzynski equality [Eq. (15)].

FIG. 2 (color online). Real part (red solid line) and imaginary
part (purple dashed line) of the irreversible work hWirri [Eq. (27)]
for the linear protocol [Eq. (26)] and α0 ¼ 3=2, which is a system
starting in the regime of broken PT symmetry. Parameters are
β ¼ 1, ℏ ¼ 1, τ ¼ 1, and κ ¼ 1. The inset illustrates the violation
of the Jarzynski equality [Eq. (15)] in the real part (blue solid line)
and the imaginary part (green dashed line).
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waveguides. In these systems the time-dependent dynamics
is frozen in the amplitude profile of the fields. Time-
dependent driving could be implemented by modulation
of the refraction index over the length of the waveguide. For
this system we have found that the phase transition between
the regimes of unbroken and broken PT symmetry is
thermodynamically inhibited as the irreversibleworkdiverges
at the critical point—the system’s response freezes out.
We emphasize that we chose the optical system due to its

mathematical simplicity. However, all reported findings are
completely general and also apply, for instance, to PT -
symmetric systems in microwave billiards [44], photonic
lattices [45], LRC circuits [46], optical lattices [47],
metamaterials [48], or phonon lasers [49].
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Energy through a LANL Director’s Funded Fellowship.
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