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Estimating image uncertainty is fundamental to guiding the interpretation of geoscientific tomographic
maps. We reveal novel uncertainty topologies (loops) which indicate that while the speeds of both low- and
high-velocity anomalies may be well constrained, their locations tend to remain uncertain. The effect is
widespread: loops dominate around a third of United Kingdom Love wave tomographic uncertainties,
changing the nature of interpretation of the observed anomalies. Loops exist due to 2nd and higher order
aspects of wave physics; hence, although such structures must exist in many tomographic studies in the
physical sciences and medicine, they are unobservable using standard linearized methods. Higher order
methods might fruitfully be adopted.
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Introduction.—Tomographic imaging of the interior of
solid and fluid media has revolutionized science and
technology in fields as diverse as medicine [1–3], materials
science [4,5], chemistry [6], physics [7,8], biology [9–11],
oceanography [12], and geology [13–15]. Practitioners
derive insight into medium properties by interpreting
tomographically derived images (models); analyzing their
uncertainties is key to ensuring that such interpretations are
robust [16–19]. A recent paradigm shift in assessing
uncertainty is to consider solving for all tomographic
models that fit recorded data, rather than estimating only
a single model or image [17,20,21]. This requires that both
algorithmic and parametrization-based constraints on mod-
els are reduced to a minimum, as are theoretical simpli-
fications in the physics used to interrogate the medium. In
this study we remove most standard simplifications by
allowing both model parametrizations and data uncertain-
ties to vary within the inversion, and by removing all
linearization of ray propagation physics in Markov chain
Monte Carlo tomography (see Supplemental Material [22]).
This reveals novel structures that dominate tomographic
uncertainty estimates and change interpretations. These
structures are shown to derive from the use of variable
model parametrization and nonlinear (2nd order and above)
physics in ray tracing, and are enhanced when both ray
paths and model parametrization vary freely during
inversion.
Love-wave tomography of the British Isles.—Within the

Earth sciences, tomographic imaging of Earth’s crust and
uppermost mantle has been revolutionized in recent years
by the advent of ambient-noise interferometry [26]. Cross-
correlations of pairs of recordings of ambient seismic
waves that reverberate within the Earth, produce estimates

of band-limited Green’s functions between locations of the
recording seismometers. Since noise sources are mainly
confined to the Earth’s near surface, these estimates are
usually dominated by surface waves that would have
propagated between the two seismometer locations if
one had been occupied by a source [27]. The latter is
referred to as a virtual (imagined) seismic source. Surface-
wave travel times between pairs of seismometer locations
can thus be measured and used to image the Earth’s seismic
velocity structure tomographically [28].
We cross-correlated the horizontal components of all

pairs of simultaneously recording seismometers across the
U.K. in 2001–2003, 2006–2007, and 2010 (years that
provided a useful spread of seismometer locations). Virtual
sources were thus constructed from each seismometer,
providing an estimate of the Love-wave components of
interseismometer Green’s functions. Seismometer locations
and possible interseismometer ray paths are illustrated in
Fig. S1 in the Supplemental Material [22], showing a
high density of stations and hence rays in the north and
southwest, with lower density in the central and eastern
U.K. We applied frequency-time analysis to the resulting
Green’s function estimates to measure the time taken by
fundamental-mode Love waves to travel between each pair
of seismometers around periods within the main noise band
of 6 to 12 s period [29]. Those travel times are then used for
travel-time tomography.
We modified the stochastic (reversible-jump Markov

chain Monte Carlo—RJMCMC) tomographic method of
Bodin and Sambridge [21] to avoid any linearization of
the physics of ray propagation. This method allows the
Voronoi cell-based model parametrization to vary within
the inversion and produces a large family of model
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samples, the distribution of which is consistent with the
Bayesian posterior probability distribution of the model
given the data (travel times) and a priori information. The
relationship between travel times and velocity is nonlinear
in that the travel-time integrand is a nonlinear function of
velocity because ray trajectories depend on the velocity
structure of the medium itself. Previous studies linearized
the physics by fixing the rays at locations consistent with
their best estimate of the mean model at successive stages
of the tomographic inversion [21]. We trace new rays
through every model considered, hence never linearize the
overall inverse problem. A large number of model samples
(3 × 106 from 16 parallel Markov chains) are generated, out
of which 160 000 are selected to be analyzed (details in
Supplemental Material [22]).
Figure 1 shows the maps of the mean velocity of 10 s

period Love waves (a), and the standard deviation of that
velocity at each point across the U.K. (b), both derived
from the 160 000 velocity model samples. Consistent with
other studies [29,30] and geological expectations, high
mean seismic velocities are observed in the metamorphic
and igneous complexes of Scotland in the north, Southern
Uplands (∼55°N), and Cornwall (southwest); low velocities
are observed in sediments of the Midland valley (∼56°N),
Irish Sea (magnified panel), and basins around London in
the south.
Off-shore uncertainties are equal to their a priori values

since few rays visit marine areas. Within the region
interrogated by the data, uncertainties are generally lower
in the north and southwest of the U.K. where there is a

relatively high density of seismometers; uncertainties are
higher where the seismometer density is lower. This is also
as expected.
The high-uncertainty looplike features such as the one

highlighted are not expected. Looking carefully at uncer-
tainty map (b), similar looplike topologies of various
shapes and sizes are observed to span much of the
U.K. mainland (e.g., around low-velocity anomalies at
−3°E50.5°N, −1.5°E51.5°N, −5.5°E51.5°N, and around the
high-velocity anomaly at −1°E53°N). Indeed the loops
themselves define all of the highest uncertainties observed
on land, and conducting synthetic tomography tests across
various known velocity structures we find that loops always
seem to contain the highest uncertainties.
Figure 1(c) shows the uncertainty estimated from the

same data using standard linearized (1st order) methods
here using fast-marching surface tomography (FMST [31]):
ray paths begin at a priori estimates of their positions
(traced through the prior model, here homogeneous). After
iteratively inverting for the best-fit model, retracing rays
through that model, and repeating the linearized inversion
with rays fixed at their new positions (similar to [29]),
uncertainties are estimated from linearized covariances
calculated using the final set of rays. No loops are observed,
showing that loop structures are not produced when
we include only 1st order physics and fix the model
parametrization.
In retrospect, similar looplike uncertainty structures are

observable in other studies which use transdimensional
tomography with fixed ray geometries. These studies
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FIG. 1 (color). Ambient-noise Love-wave tomography of the British Isles at 10 s period. (a) Average velocity model; (b) standard
deviation map, obtained from an ensemble of 160 000 models, with two details highlighted in magnified plots; (c) standard deviation
map for the same data inverted using linearized tomography.
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linearize the physics of wave propagation but remain
nonlinear in the model parametrization [e.g., Fig. 9(a) of
[21]; Fig. 7 of [32]]. To assess the effect of fixed and
variable parametrization and ray paths, we performed
synthetic tests first using a linearized subspace inversion
scheme (FMST [31]), and then using MCMC tomography
with either fixed or variable (transdimensional) Voronoi-
cell parametrization, and either fixed or variable rays. We
found that loops may emerge when either ray paths or
model parametrization are allowed to vary freely during
inversion (either creates nonlinearity in the model-data
relationship). However, when rays are fixed, the uncertainty
structure is strictly dictated by the ray geometry regardless
of the inversion scheme and type of model parametrization
employed, and loops are observed only in extremely
fortuitous cases. Also, only a combination of variable ray
paths and parametrization were observed to ensure a fully
nonlinear estimation of velocity structures and uncertainty
without introducing clear ray path- or parametrization-
related biases. Tomographic uncertainties are therefore
particularly dominated by loop structures only when both
parametrization and rays vary freely, explaining why they
have not previously been recognized as important features
of uncertainty.
Discussion.—To explain the origin of such loops, Fig. 2

shows rays between a single source and receiver through
an otherwise homogeneous medium that contains a low
velocity anomaly. Although this example simplifies the
typical geophysical scenario above, related geometries
occur in other fields such as medical tomography and
non-destructive testing in materials science.
Since rays are by definition minimum-travel-time paths,

Fig. 2(a) illustrates that first-arriving energy does not pass
through very low velocity anomalies, but rather refracts
around their edges with travel time t1. This occurs unless
the anomaly’s velocity becomes sufficiently high that it is
equally quick to go around or through the anomaly (third
from left plot). The first arriving energy passes through the
anomaly if its velocity is higher than this threshold; in that
case the travel time is sensitive to the velocity inside the
anomaly, and hence changes. Travel-time measurement t1
therefore only provides an upper bound on velocities of
anomalies of fixed shape and size.
Row (b) shows similar phenomena when varying both

the anomaly’s size and velocity simultaneously. Travel time
t1 is obtained for a larger anomaly with higher velocity
(left), or a smaller anomaly with lower velocity (center
plots), in each case resulting from energy passing through
the anomaly. This occurs down to the same size and
velocity threshold as in the top row (third from left plot),
beyond which the earliest arriving energy refracts around
the anomaly’s edge.
The first two plots in row (c) of Fig. 2 show the effect of a

variation in the shape of the circular anomaly at which the
ray-path switch takes place (third plot). Although the three

anomalies have different shapes, the ray path is similar and
the same travel time t1 is obtained. Shapes of all other
circular anomalies within the dashed box can vary similarly
without affecting the travel time. The fourth plot in (c)
shows the uncertainty map obtained by calculating the
standard deviation across all models within the dashed box.
The largest uncertainties occur in a loop spanning the edges
of the anomalies in row (c), resembling the uncertainty
loops observed in U.K. tomography.
Now consider the inverse (tomography) problem: all

anomalies within the box result in travel time t1, and for any
measured travel time a similar set of plots exist (scaled
appropriately). Hence, any travel time only constrains
the maximum velocity of a circumnavigable low velocity
anomaly (top row of plots), and only constrains the
anomaly’s boundary to lie within some geometrical bounds
(examples in the second and third rows). The anomaly can
be further constrained by other sources and receivers, but
each individual travel-time measurement results in uncer-
tainty that can be characterized schematically similarly to
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FIG. 2 (color). The effect of a low velocity anomaly (dark to
light red) on synthetic rays and travel times. (a) The velocity of
the circular anomaly increases from left to right. (b) Both size and
velocity of the anomaly decrease from left to right. (c) Three
anomalies with similar velocity and size but different shape. The
green dashed box encloses velocity models that are all compatible
with a given travel time t1; models on the right produce different
travel times t2 and t3. The standard deviation across all models
within the box is shown in the fourth plot of row (c). (d) Synthetic
tomography of the low-velocity anomaly located at the center of
an array of receivers: true velocity field and ray paths are shown
in the first two plots; ensemble average and uncertainty map from
fully nonlinear RJMCMC tomography are in the right two plots.
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the range of models in Fig. 2. We thus expect an upper-
bounded velocity on the interior of low velocity anomalies,
and a high velocity uncertainty at any point within some
geometrical annulus spanning the edge of each anomaly
[the high-uncertainty annulus in the fourth plot of Fig. 2(c)]
since that point may lie either inside or outside of the
anomaly; hence, its velocity may range from low to high
values. The combined effect of both types of uncertainty
should thus produce the observed loops of high uncertainty
in the locations of anomaly edges, as confirmed by
marginal probability histograms in Fig. 3 calculated at
three points in Fig. 1.
To check this intuition, row (d) of Fig. 2 shows an

application of the fully nonlinear transdimensional algorithm
to the synthetic problem above. The first plot in row (d)
shows a circular velocity anomaly of velocity 2.5 km s−1
within a circular array of receivers and background velocity
of 3.5 km s−1. To emulate typical ambient-noise tomogra-
phy scenarios, travel times were calculated along interre-
ceiver paths (true rays are shown in the second plot). The
ensemble average and uncertainty map from tomography
are shown in the two right plots. The ensemble average
approximates the true velocity model and the uncertainty
map illustrates that, while the amplitude of the anomaly is
reasonably constrained, velocities on its boundaries have far
larger uncertainties, producing a looplike structure. Similar
experiments showed that loops are thinner and have lower
uncertainties around high-velocity anomalies.
In Fig. 1, uncertainty loops appear to exhibit finer spatial

detail than the velocity anomalies themselves. Loops define
uncertainty in the anomaly boundaries: the loop’s thickness
therefore depends on the geometry of available seismom-
eter arrays, and generally becomes narrower for denser
arrays. Thus uncertainty loops provide a new way to
interpret tomographic images: they surround isolated
anomalies, and define uncertainty in anomaly shapes.
For example, within the magnified Irish Sea, the uncer-
tainty loop shows that the anomaly may extend southeast
and be part of another low-velocity anomaly. Also, note
that if a discontinuity in the velocity field occurred along

a linear boundary, a “line” of high uncertainty (in the
location of that boundary) may be observed, rather than a
closed loop.
The main difference in character between the models

that lie within the dashed box in Fig. 2 and those in the
right-hand column is a switch of ray trajectories.
Uncertainty loops therefore exist in part because ray paths
move. This seems odd since Fermat’s theorem states that
travel time changes only to second and higher orders with
perturbations in ray path caused by velocity changes in the
medium. However, that statement concerns the forward
problem of predicting travel times given a velocity struc-
ture. The inverse problem consists of attributing observed
ray-path-averaged travel times to specific anomalies within
the medium. Estimating ray-path geometries is critical to
locating these anomalies correctly; hence, such second and
higher order effects are central elements of tomography and
uncertainty analysis. The latter holds true for both low and
high velocity anomalies as both cause ray-path deviations
(e.g., the high velocity anomaly at −1°E, 53°N also has a
corresponding loop). This explains why uncertainty loops
have not been observed to dominate uncertainties previ-
ously: they only dominate when both model parametriza-
tion and ray paths are allowed to vary freely within the
uncertainty analysis, which has almost never been the case
in previous (usually linearized) tomography studies.
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