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The emergence of particle irreversibility in periodically driven colloidal suspensions has been interpreted
as resulting either from a nonequilibrium phase transition to an absorbing state or from the chaotic nature of
particle trajectories. Using a simple model of a driven suspension, we show that a nonequilibrium phase
transition is accompanied by hyperuniform static density fluctuations in the vicinity of the transition, where
we also observe strong dynamic heterogeneities reminiscent of dynamics in glassy materials. We find that
single particle dynamics becomes intermittent and strongly non-Fickian, and that collective dynamics
becomes spatially correlated over diverging length scales. Our results suggest that the two theoretical
scenarii can be experimentally discriminated using particle-resolved measurements of standard static and
dynamic observables.

DOI: 10.1103/PhysRevLett.114.148301 PACS numbers: 82.70.Dd, 05.40.-a, 05.65.+b, 47.57.E-

Nonequilibrium phase transitions have been studied
intensively in recent years [1,2]. Whereas many theoretical
models have been analyzed and organized in a small
number of universality classes (such as directed percola-
tion), convincing experimental realizations have typically
proved harder to achieve. Non-Brownian colloidal suspen-
sions (such as stabilized droplet emulsions or large particles
suspended in a viscous solvent) driven by a low-frequency
periodic shear flow represent one potential realization of a
second-order phase transition towards an absorbing state
[3–9]. It has been found experimentally that below a certain
shearing amplitude (which depends on the density), the
system evolves after a transient into a reversible state where
all particles return to the same position at the end of each
cycle of the periodic drive. Above a well-defined threshold
amplitude, particle motion is no longer periodic, and a
continuous increase of diffusive motion is observed in this
irreversible phase [3].
Several studies [4–6,10–13] suggested that the experi-

mental transition is in the universality class of directed
percolation (or conserved directed percolation). This inter-
pretation is further supported by an elegant numerical model
of the original experiment, which was shown to undergo a
second-order nonequilibrium phase transition [4]. However,
an alternative explanation was also proposed [14–19], which
relies on the chaotic nature of trajectories in dynamical
systems. In this view, a phase transition is not needed to
explain the relatively sharp onset of irreversibility observed
in the experiments. Experiments have not fully established
criticality because direct measurements of the critical expo-
nents are difficult [3,4,13,16]. As a result, the nature of the
initial experimental observations remains to be fully under-
stood. Here we establish that measurements based on
standard particle-resolved observables developed in the
context of glassy dynamics [20] very directly reveal

nonequilibrium criticality, when present. This suggests that
the two existing theoretical scenarii can be experimentally
discriminated using standard static anddynamic observables.
To support our conclusions, we consider a modified

version of the model proposed in Ref. [4], as illustrated in
Fig. 1(a). We consider a bidimensional assembly of
spherical particles of diameter σ, using periodic boundary
conditions in a box of linear size L. The system is initiated
from a random configuration, where particle overlaps may
exist. At each time step, we simultaneously move all
particles which overlap with one neighbor (or several)
by an independent random amount. The displacement of

FIG. 1 (color online). (a) Sketch of the model: Particles over-
lapping at time t (red) are simultaneously moved by an inde-
pendent random amount. Particles with no overlap (black) are
immobile, but may become mobile at later time. (b) The ðϕ; δÞ
phase diagram with a passive region where the number of mobile
particles vanishes at long time and an active phase where particle
overlaps are constantly destroyed and created. The line of second-
order critical points is determined from investigating the state
points shown with symbols.

PRL 114, 148301 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

10 APRIL 2015

0031-9007=15=114(14)=148301(5) 148301-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.114.148301
http://dx.doi.org/10.1103/PhysRevLett.114.148301
http://dx.doi.org/10.1103/PhysRevLett.114.148301
http://dx.doi.org/10.1103/PhysRevLett.114.148301


particle i is of the form ~δi ¼ ϵiêi, where êi is a unit vector
whose orientation is uniformly distributed on a unit circle
and the magnitude ϵi is uniformly distributed on the interval
½0; δ�. The time is then incremented by one unit. The model
has two control parameters: the area fraction
ϕ ¼ ðπNσ2=4L2Þ, and the maximal amplitude of the
random kicks δ. We use σ as the unit length and we vary
the area fraction by changing the number of particles N
while keeping the system size fixed at L ¼ 280 (unless
mentioned otherwise).
Our model represents an isotropic version of the peri-

odically sheared system considered in Ref. [4], where
random kicks were given to particles virtually colliding
with neighbors during a shear deformation cycle (the shear
cycle is actually not performed). This original rule is in fact
equivalent to giving a random kick to each particle having at
least one neighbor in an anisotropic area near its center [21].
In our model, we consider that this area is circular, and σ
represents its diameter. This small simplification makes the
determination of the critical properties of the model simpler
because it prevents the development of locally anisotropic
correlations [22], which could affect the numerical value of
the measured exponents, but not the overall qualitative
behavior that we report. Our setup is also physically
meaningful, as it depicts the experimental situation where
a non-Brownian colloidal suspension is driven periodically
by a periodic change of the particle diameters leading to
irreversible collisions. This is obviously equivalent to
isotropic compression cycles of a colloidal system. Such
experiments could be realized experimentally using ther-
mosensitive colloidal particles [13].
As expected [4] we find that below a critical density

ϕcðδÞ, the number of active particles evolves to zero (no
more overlap) and all particles stop moving; this corre-
sponds to the “reversible” phase of the experiments with
periodic forcing. Above ϕcðδÞ, the number of active
particles fluctuates at a steady state around its mean nonzero
value, and the system is diffusive. By carefully exploring the
steady state properties [23] of the state points shown in
Fig. 1(b), we have numerically determined the critical line
ϕcðδÞ separating the two phases. To determine the critical
properties of the model, we used the order parameter, which
is the fraction of active particles, faðtÞ ¼ Na=N, where
NaðtÞ is the number of particles having overlaps at time t.
The spatiotemporal properties of faðtÞ display critical
properties that can be compared to known universality
classes [24]. While such a study is not problematic for
computer simulations, it is more difficult in experiments as
it requires tracking the displacement of all particles at all
times and separating mobile from immobile particles. We
provide below simpler observables which exhibit relevant
signatures of the underlying phase transition.
A simpler quantity, measured in the original experimen-

tal study, is the single particle diffusion constant, defined as
D ¼ limt→∞hjΔ~rðtÞj2i=ð4tÞ, where Δ~rðtÞ represents the

displacement of a given particle over a time t. The brackets
indicate an ensemble average (equivalent, in steady state, to
a time average). This measurement can be performed using
tracer particles followed over long times. In our model, we
find that D ¼ 0 for ϕ < ϕc, and it emerges continuously
above ϕc:

D ∼ ðϕ − ϕcÞβ; ϕ → ϕþ
c : ð1Þ

We measure β≃ 0.572, which is similar to the value found
in related studies [4,11–13,25]. Additionally, we find that β
remains constant, within statistical uncertainty, along the
line ϕcðδÞ. For most of this Letter, we thus fix δ ¼ 0.5 for
which ϕc ≃ 0.375. The critical exponent β in Eq. (1) is
relevant because it is directly to the order parameter, hfai.
To see this, let us rewrite the particle displacement as
Δ~rðtÞ ¼ P

t−1
t0¼0

½~rðt0 þ 1Þ − ~rðt0Þ�. Denoting by ta the num-
ber of time steps where the tracer is mobile between times 0
and t, the displacement is the sum of ta random kicks. As a
result, D scales as ta=t, which represents the fraction of the
time when the tracer is mobile. When t → ∞, this becomes
the ensemble average hfai. In two dimensions, β ≈ 0.58 for
directed percolation, and β ≈ 0.64 for conserved directed
percolation (or “Manna” universality class) [2]. Our sim-
ulations appear closer to the directed percolation univer-
sality class.
In experiments with non-Brownian particles, it is easy to

visualize particle configurations and analyze static density
fluctuations. In Fig. 2(a), we show a snapshot of the system
close to criticality, where very few active particles coexist
with many passive ones. The structure appears globally
homogeneous with no sign of large scale density fluctua-
tions. At the smaller scale, particles form short one-dimen-
sional clusters, or “strings,” which are disconnected and do
not percolate throughout the system. This tendency is
confirmed in the radial distribution function [26], gðrÞ,
shown in Fig. 2(b) for various densities across the critical
point. We see that gðrÞ has two peaks at r ¼ 1 and r ¼ 2,
indicative of the stringlike structure at short length scales.
The sharpness of these two peaks is controlled by the
amplitude δ of the random jumps; they become sharper as
δ → 0. Very similar radial distribution functions have
recently been observed in a periodically driven colloidal
suspension [16]. More importantly, we conclude from
Fig. 2(b) that gðrÞ is rather insensitive to the crossing of
the phase transition.
While this might indicate that static density fluctuations

are insensitive to the critical point, Fourier transforming
gðrÞ to get the structure factor SðqÞ shows interesting
behavior, as suggested very recently [27]. In Figs. 2(c) and
2(d) we show the low-q behavior of SðqÞ, respectively,
above and below the critical point. In this log-log repre-
sentation it is clear that Sðq → 0Þ becomes extremely small
as ϕ → ϕ�

c , with emerging power laws. Notice that SðqÞ
converges to the same form on both sides, but convergence
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from the absorbing phase is slower, as the system retains
memory of the disordered initial conditions on very large
scale. However, careful analysis of the density evolution
[24] reveals that Sðq → 0Þ vanishes precisely at ϕc, where
SðqÞ ≈ q up to q ≈ 0.05, crossing over to SðqÞ ≈ q0.45 at
larger q. A vanishing Sðq → 0Þ physically means that
density fluctuations are strongly suppressed at large scale,
which is termed “hyperuniformity” [28]. The linear behav-
ior with q implies that the number of particles in a (large)
subsystem of size L obeys hΔN2i=hNi ∼ L−1. In an
equilibrium fluid, this ratio is instead independent of L.
Hyperuniformity has been reported in a number of non-
equilibrium situations [28–32], among which are hard
sphere jammed packings. However, the critical density
here is much smaller than the jamming density and the
hyperuniform structure is different from that of compressed
hard spheres. A previous study [27] suggested that SðqÞ ∼
q0.45 reflects the asymptotic behavior of SðqÞ, whereas we
find that this is only a transient. These findings imply
nonetheless that static fluctuations reveal a striking sig-
nature of criticality, which has not yet been investigated
experimentally [3,13,16].

We now turn to the dynamics. Close to the irreversibility
transition, we detect strong signatures of dynamic hetero-
geneities, reminiscent of observations in disordered sys-
tems approaching dynamic arrest (such as dense colloidal
suspensions) [20]. This analogy is useful, as it provides us
with a toolbox to directly reveal the criticality associated to
the nonequilibrium phase transition.
A striking observation stems from tracer trajectories; see

Figs. 3(a) and 3(b). Over short times, Fig. 3(a), the
trajectory is characterized by long waiting periods (when
the particle is passive) and a few moments where the
particle makes several rapid jumps (when the particle is
active). Because activity is sparse close to ϕc, particles are
necessarily immobile most of the time. Such intermittency
is also observed in glassy fluids where particles are caged
over long periods [33]. Much longer trajectories resemble
ordinary Brownian motion, Fig. 3(b), suggesting that
Fickian diffusion is recovered at large scale. Intermittent,
non-Fickian dynamics thus represents another signature
of the criticality, which could be systematically inves-
tigated experimentally through the self-intermediate
function Fsðq; tÞ ¼ hð1=NÞPiciðq; tÞi, where ciðq; tÞ ¼
cos ½~q · Δ~riðtÞ�. Physically, Fsðq; tÞ relaxes from 1 to 0
when particles have moved an average distance ð2π=qÞ.
The relaxation time τðqÞ [defined as Fsðq; τÞ ¼ e−1] is

plotted in Fig. 3(c). Over large distances (q → 0), Fickian
behavior is observed, τðqÞ ∼ 1=ðDq2Þ. On the other hand,
at shorter length scales τðqÞ crosses over to a plateau value,
τ∞ðϕÞ. As ϕ → ϕþ

c , this non-Fickian plateau regime
becomes dominant. Physically, τ∞ represents the typical
waiting time before an immobile particle becomes
active. We measure τ∞ ∼ ðϕ − ϕcÞ−ν∥ , where ν∥ ≃ 1.27;
see Fig 3(f). Interestingly, we found numerically that the
same exponent ν∥ controls the temporal fluctuations of the
order parameter, faðtÞ [24]. This is close to the directed
percolation value ν∥ ¼ 1.30 (ν∥ ¼ 1.23 for conserved
directed percolation) [2]. Finally, because τ∞ and D−1

obey different power laws, we can define a diverging
crossover length scale for the emergence of Fickian
diffusion [33], lF ∼

ffiffiffiffiffiffiffiffiffiffi
Dτ∞

p
∼ ðϕ − ϕcÞ−ðν∥−βÞ=2 [see

Fig. 3(c)], indicating that diffusion is non-Fickian at all
length scale at the critical point.
Intermittency suggests that mobile and immobile par-

ticles coexist in space. We now show that the associated
dynamic fluctuations also diverge at ϕc. To this end, we
study spatial correlations of particle displacements, in
analogy with measurements in dense fluids [20]. We first
introduce a “four-point” structure factor S4ðk; tÞ [20]:

S4ðk; tÞ ¼
�
1

N

X
i;j

eik·ðri−rjÞ(ciðq; tÞcjðq; tÞ)
�
; ð2Þ

where we fix q ¼ 2π [in the plateau regime of τðqÞ in
Fig 3(c)]. Physically, S4ðk; tÞ measures (in the Fourier
domain) spatial correlations between particles which have

FIG. 2 (color online). (a) Typical snapshot close to criticality
(ϕ=ϕc ¼ 1.004 and δ ¼ 0.05) at steady state. Active (passive)
particles are shown in red (black). Bonds are drawn between
particles whose separation is less than 1.05 to reveal stringlike
clusters. (b) The radial distribution function for different densities
(for δ ¼ 0.05) reveals two peaks at r ¼ 1 and r ¼ 2, due to the
strings, but gðrÞ does not change significantly across the
transition. (c) The structure factor for different densities ϕ >
ϕc reveals hyperuniformity at large scale close to criticality
ϕc ≃ 0.37499, with Sðq → 0Þ ∼ q crossing over to a different
power law. (d) The structure factor for ϕ < ϕc behaves similarly
as ϕc is approached. The system size is L ¼ 280 except for
ϕ=ϕc ¼ 1.000 for which L ¼ 560 is used.
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moved a distance q−1 during the time interval t. We also
define the four-point susceptibility χ4ðtÞ ¼ S4ðk → 0; tÞ,
which measures the variance of spontaneous fluctuations of
the time correlation function Fsðq; tÞ.
The dynamic susceptibility is plotted in Fig. 3(d) for

different densities. For a given ϕ, χ4ðtÞ exhibits a maxi-
mum, χ�4, at a time τ�4. Both τ�4 and χ

�
4 grow rapidly as ϕc is

approached, and obey power laws, see Fig. 3(f):
τ�4 ∼ ðϕ − ϕcÞ−ν∥ , with ν∥ ≃ 1.24, compatible with the
result for τ∞. Similarly, χ�4 ∼ ðϕ − ϕcÞ−γ, with γ ≃ 1.22.
The divergence of χ�4 is accompanied by a diverging
correlation length, as revealed by the evolution of
S4ðk; tÞ in Fig. 3(e). Here we fix t ¼ τ�4 when the corre-
lation is maximal. We observe a growing peak at low wave
vector shifting to lower k as ϕ increases. We follow
established procedures [20] and extract the dynamic length
scale ξ�4 by using the following scaling form:
S4ðk; τ�4Þ=χ�4 ¼ F(kξ�4ðϕÞ), where FðxÞ is a scaling func-
tion independent of ϕ. As shown in Fig. 3(f), ξ�4 obeys a
power law divergence, ξ�4 ∼ ðϕ − ϕcÞν⊥ . We measure
ν⊥ ≃ 0.72. We found numerically that a similar critical
exponent controls the divergence of the order parameter
correlation length [24]. Again, our measurements compare

well to the directed percolation exponent, ν⊥ ¼ 0.72
(ν⊥ ¼ 0.80 for conserved directed percolation) [2].
Our results demonstrate that the irreversibility transition

observed in periodically driven systems has interesting
qualitative analogies with glassy systems. In both cases, the
radial distribution function gðrÞ appears insensitive to
dynamic arrest, whereas other quantities display stronger
signatures. We have reported a strong suppression of the
density fluctuations at large scales, and a divergence of
several dynamic quantities associated to single particle
and collective dynamics. The analogy between the two
types of systems suggests that particle-based measurements
and observables developed for glassy materials could
prove useful in driven suspensions. These tools could
in particular reveal whether the “singularity-free” explan-
ation based on the Lyapunov instability is experimentally
relevant. Our work also suggests that it would be interesting
to characterize more precisely the static structure and
dynamic correlations in the vicinity of the yielding tran-
sition in dense suspensions under oscillatory shear
[7,13,17,25,34], which represents another important sit-
uation where a reversibility transition and a transition to
chaos [35] should be better understood.

FIG. 3 (color online). (a) Typical particle trajectory along the x axis for ϕ=ϕc ¼ 1.009 characterized by long waiting periods (when the
particle is passive) and few jumps (when the particle is active). (b) Over a much longer time interval, the same trajectory resembles an
ordinary random walk. (c) Wave vector dependence of the relaxation time scale τðqÞ for two different densities. A non-Fickian
[τ ∼ τ∞ðϕÞ] to Fickian [τ ∼ 1=ðDq2Þ] crossover is observed at a wave vector [2π=lFðϕÞ] which decreases as the transition is
approached. (d) The four-point susceptibility χ4ðtÞ quantifies spatially correlated dynamics over a time interval t. It shows a peak at
t ¼ τ�4ðϕÞ which diverges as ϕ → ϕþ

c . (e) Four-point structure factor S4ðk; t ¼ τ�4Þ as a function of the wave vector k for different
densities reveals a diverging dynamic correlation length ξ�4ðϕÞ. (f) Critical power laws for quantities measured in this work: inverse
diffusion constant D−1 (exponent 0.572), Fickian crossover time scale τ∞ (1.27), dynamic time scale τ�4 (1.24), maximum susceptibility
χ�4 (1.22), and dynamic length scale ξ�4 (0.72).
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