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We investigate localization properties in a family of deterministic (i.e., no disorder) nearest neighbor
tight binding models with quasiperiodic on site modulation. We prove that this family is self-dual under a
generalized duality transformation. The self-dual condition for this general model turns out to be a simple
closed form function of the model parameters and energy. We introduce the typical density of states as an
order parameter for localization in quasiperiodic systems. By direct calculations of the inverse participation
ratio and the typical density of states we numerically verify that this self-dual line indeed defines a mobility
edge in energy separating localized and extended states. Our model is a first example of a nearest neighbor
tight binding model manifesting a mobility edge protected by a duality symmetry. We propose a realistic
experimental scheme to realize our results in atomic optical lattices and photonic waveguides.
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Anderson localization [1] is a universal and extensively
studied property of a quantum particle or a wave in a
disordered medium. An interesting consequence of
Anderson localization is a quantum phase transition
between extended and localized states as a function of
the disorder strength. In three dimensional systems with
random (uncorrelated) disorder, a localization transition
occurs as the strength of disorder crosses a critical value
forming a sharp energy dependent mobility edge at the
phase boundary separating localized (extended) states
below (above) the mobility edge. Scaling theory [2] has
shown the absence of this critical behavior in one and
two dimensions where all states, at least in the absence of
interaction, are known to be localized in a disordered
system, pushing the mobility edge effectively to infinite
energy. However, in one dimension this picture changes for
a quasiperiodic system with two incommensurate (but
deterministic) lattice potentials, which in a loose qualitative
sense might be construed to be a highly correlated disorder,
albeit perfectly well defined with no randomness what-
soever. Aubry and Andre [3] showed that a 1D tight binding
model with an on site cosine modulation incommensurate
with the underlying lattice has a self-dual symmetry and
manifests an energy independent localization transition as a
function of the modulation strength; i.e., all states are either
localized or extended depending on the relative strength of
the incommensurate modulation potential with respect to
the lattice potential. The same model was earlier considered
by Harper [4] and by Azbel [5] and Hofstadter [6] to study
the self-similar spectrum of conduction electrons in an
external magnetic field (we abbreviate this model as AAH
from hereon).
This result [3] has led to an extensive theoretical

investigation of the AAH model in the context of locali-
zation [7–12] in an incommensurate potential. Recent

experimental developments in photonic crystals [13–16]
and ultracold atoms [17–19] have led to the implementation
of the quasiperiodic AAH model where this localization
transition has been observed. Recent works have used
analytical [20] and numerical methods [21] to show the
existence of a many body localization transition in the
quasiperiodic AAH model in the presence of weak inter-
actions. The duality-driven and energy independent locali-
zation transition in the AAH model does not manifest a
mobility edge, which is a hallmark of the disorder tuned
localization transition in 3D. The 1D localization transition
in the AAH model, defined by the self-duality point, thus
has no analog in disorder-driven Anderson localization, and
does not give any insight into the physics of 3D mobility
edges. Recent works have shown the existence of a
mobility edge in quasiperiodic flat band models [22].
In this Letter we show that there exists a general family

of quasiperiodic models with nearest neighbor hopping
that are self-dual under a generalized transformation. We
analytically show that this general family has a true 1D
mobility edge, not allowed in the Anderson model and the
AAH model, which can be expressed as a closed form
expression involving energy and system parameters. In
addition, we introduce the typical density of states (i.e., the
spatial geometric average of the local density of states) as
a generic order parameter for localization in quasiperiodic
systems that can naturally be generalized to interacting
many body problems. We organize this Letter by first
writing the self-duality condition for a specific on site
model. We then provide a physical intuition for this novel
self-dual critical condition and present numerical verifica-
tion for the existence of the mobility edge through
calculations of the inverse participation ratio and the typical
density of states. We then present a different model
satisfying exactly the same critical condition with a totally
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different energy spectrum. After developing some physical
intuition for our result, we explicitly prove that the mobility
edge is precisely the self-duality condition for a broad class
of nearest neighbor models. We conclude by presenting a
concrete schematic to engineer our model in ultracold
atoms and photonic waveguides. The experimental obser-
vation of a 1D mobility edge would be an exciting and
surprising result, leading to a deeper understanding of
quantum localization phenomena.
Model.—We consider a family of 1D tight binding

models with an on site modulation Vn defined as

tðun−1 þ unþ1Þ þ Vnðα;ϕÞun ¼ Eun: ð1Þ
The on site potential, Vnðα;ϕÞ, is characterized by the
deformation parameter α, on site modulation strength λ,
period 1=b, and the phase parameter ϕ which is redundant
in the context of localization. For a quasiperiodic modu-
lation, we set b to be irrational (we choose 1=b ¼ ð ffiffiffi

5
p

−
1Þ=2 for our numerical work although any other irrational
choice for b is equally acceptable).
The first family of models we consider are specified by

an on site potential

Vnðα;ϕÞ ¼ 2λ
cosð2πnbþ ϕÞ

1 − α cosð2πnbþ ϕÞ : ð2Þ

This on site potential is a smooth function of α in the open
interval α ∈ ð−1; 1Þ. Vnðα;ϕÞ has singularities at α ¼ �1,
which we approach only in a limiting sense. Each value of
α corresponds to a different tight binding model contain-
ing the AAH (α ¼ 0) model as a limiting case and a
general quasiperiodic model with correlated singularities
at α ¼ �1.
The AAH limit (α ¼ 0) with irrational b manifests a

localization transition at the self-dual point jλj ¼ jtj [3]. A
vast body of numerical work [7,9–12] has been done to
understand how this critical point changes once the duality
symmetry of the AAH model is broken in some controlled
fashion. Based on numerical results, a general consensus
has prevailed that the jλj ¼ jtj critical point modifies into a
mobility edge. The α ≠ 0 in Eq. (2) can be thought of as a
perturbation that breaks this duality symmetry.
In this Letter, we analytically compute the exact mobility

edge for a wide class of models specified by Eqs. (1), (2),
and (6). The mobility edge separating the localized and
extended states for Eq. (2) is given by the following
extremely simple closed form expression,

αE ¼ 2sgnðλÞðjtj − jλjÞ: ð3Þ

This is our central result, which we prove by identifying a
generalized duality symmetry. Before deriving Eq. (3), we
show analytical consistency and numerical verification of
this condition representing it as a mobility edge. Note that

the critical condition must reduce to that of the AAH model
for α ¼ 0. This is indeed the case for α ¼ 0, as the critical
condition [Eq. (3)] becomes energy independent giving the
familiar self-dual Auby-Andre jλj ¼ jtj critical point. Note
that for the AAH model, the duality transformation is a
simple Fourier transformation that maps extended (local-
ized) states in the real space to the localized (extended)
states in the Fourier space. This leads to a very special
singular continuous Cantor set spectrum at the self-dual
point where the critical states can neither be extended nor
localized [3]. This mapping will not be obvious for the
general case and we numerically confirm that this critical
condition, defined by Eq. (3), is indeed a localization
transition.
We numerically diagonalize the tight binding model

defined in Eq. (1) for L ¼ 500 sites with periodic boundary
conditions. The localization properties of an eigenstate can
be numerically quantified using the inverse participation
ratio (IPR). The IPR for an eigenstate E is given as

IPRðEÞ ¼
P

njunðEÞj4
ðPnjunðEÞj2Þ2

: ð4Þ

For a localized eigenstate, the IPR approaches the maxi-
mum possible value ∼1. For an extended state, the IPR is of
the order 1=L, which is vanishingly small in the large
system size limit.
In addition to the IPR, we define the typical density of

states (TDOS) as a new order parameter for the localization
transition in quasiperiodic systems.

ρtðEÞ ¼ exp

�

1

L

X

L

i¼1

log ρiðEÞ
�

ð5Þ

where ρiðEÞ is the local density of states at site i (defined
explicitly in the Supplemental Material [23]). Similar to the
Anderson localization in disordered systems [23–26], this
order parameter is finite in the delocalized phase, zero in
the localized phase, and goes to zero at the transition.
Because of the quasiperiodic potential, the average over
sites resembles a disorder average and we find ρtðEÞ is only
equal to the average density of states deep in the delocal-
ized phase [23]. We calculate the TDOS using the kernel
polynomial method (KPM), which allows us to reach large
system sizes very efficiently (for details see Refs. [23,26]).
For the calculations presented here we consider a chain
length of L ¼ 10 000 and a KPM expansion order Nc ¼
32 768. As the KPM does not determine the energy
eigenstates, in order to distinguish between gapped and
localized states in the TDOS, we have filtered the energy
values plotted in Figs. 1 and 2 based on where the DOS has
a finite value [23]. As shown in Figs. 1 and 2, the results of
the TDOS are in excellent agreement with the well-known
IPR, and thus establish ρtðEÞ as a natural order parameter
for the localization transition. As the TDOS is based on the
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local density of states, which is related to the imaginary
part of the real space Green function, this order parameter
can naturally be generalized to interacting many body
problems.
We plot the IPR, the TDOS, and the mobility edge

conjectured in Eq. (3) for each energy eigenstate as a
function of the dimensionless deformation parameter α for
different values of λ in Fig. 1. Superimposing the IPR and
the TDOS calculations with the critical condition conjec-
tured in Eq. (3) we find an excellent agreement between all
three. The α ¼ 0 slice of the plot is the AAH model for
which all the states are extended in Figs. 1(a), 1(c), and
localized for Figs. 1(b) and 1(d). For α ≠ 0, the states
remain extended or localized until it encounters the
mobility edge (red line). Across this mobility edge, the
IPR and the TDOS go to zero. indicating a localization
transition.
In the following, we consider a different family of

nearest neighbor models that satisfies the same critical
condition defined in Eq. (3). This family is defined by the
following on site potential,

Vnðα;ϕÞ ¼ 2λ
1 − cosð2πnbþ ϕÞ
1þ α cosð2πnbþ ϕÞ : ð6Þ

Note that Vnðα;ϕÞ in Eq. (6) connects different tight
binding models compared to the potential in Eq. (2).
The limiting cases of Vnðα;ϕÞ are as follows; for α ¼
−1 it corresponds to a constant on site energy 2λ, for α ¼ 0
it corresponds to a rescaled AAH model, and for α ¼ 1 it
corresponds to the closed form singular potential given by
tan2½ð2πnbþ ϕÞ=2�. In Fig. (2), we plot the numerical
spectrum as a function of α with color coded IPR
[Figs. 2(a), 2(b)] and TDOS [Figs. 2(c) and 2(d)] for
λ=jtj ¼ −0.8, −2.0. The critical condition (shown in the red
line) is in excellent agreement with the separation of the
localized and extended states as indicated by the IPR and
TDOS. We now emphasize a special feature of this 1D
model which manifests the nonperturbative nature of the
3D Anderson localization. Note that α ¼ −1 gives a
disorder-free constant potential and all the states must be
extended. Consequentially, all the states lie just below the
critical line in the extended regime for all values of λ=jtj.

FIG. 2 (color online). Results for the on site potential in Eq. (6).
(a),(b) Numerical energy spectrum E=jtj as a function of α for
L ¼ 500 sites tight binding model for t ¼ −1.0, λ=jtj ¼ −0.8 and
λ=jtj ¼ −2.0. Pure cyan denotes IPR ¼ 0 and pure black denotes
IPR ¼ 1. (c),(d) TDOS plotted after filtering based on the DOS for
L ¼ 10 000 and an expansion order Nc ¼ 32 768 for λ=jtj ¼ −0.8
and λ=jtj ¼ −2.0. Pure cyan denotes maximum TDOS values
between 1 and 10 for the extended state and pure black denotes
TDOS ¼ 0 for the localized state. Eigenvalues that have a very
small DOS are not plotted, hence the discrepancy in the black
regions between the TDOS and the IPR. The red line is a plot of
the analytically obtained critical condition defined in Eq. (3).

FIG. 1 (color online). Results for the on site potential in Eq. (2).
(a),(b) Numerical energy spectrum E=jtj as a function of α for
L ¼ 500 sites tight binding model for t ¼ −1.0, λ=jtj ¼ −0.9 and
λ=jtj ¼ −1.1. Pure cyan denotes IPR ¼ 0 and pure black denotes
IPR ¼ 1. (c),(d) TDOS plotted after filtering based on the DOS for
L ¼ 10 000 and an expansion order Nc ¼ 32 768 for λ=jtj ¼ −0.9
and λ=jtj ¼ −1.1. Pure cyan denotes maximum TDOS values
between 1 and 10 for the extended state and pure black denotes
TDOS ¼ 0 for the localized state. Eigenvalues that have a very
small DOS are not plotted, hence the discrepancy in the black
regions between the TDOS and the IPR. The red line is a plot of the
analytically obtained critical condition defined in Eq. (3).
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Infinitesimal deviation from the α ¼ −1 point manifests
localized states across this critical line. The number of
available localized states depends on the value of λ=jtj.
This feature, showing up clearly in our 1D incommensurate
model, is one of the striking manifestations of localization
phenomenon, where any infinitesimal disorder completely
localizes some eigenstates, forming a sharp mobility edge
defined by Eq. (3).
Self-duality.—Having presented compelling numerical

evidence that the condition conjectured in Eq. (3) is a
critical point of a localization transition, we now analyti-
cally derive this condition. We rewrite the model defined in
Eq. (1) for the on site potentials defined in Eqs. (2) and (6)
in the following form,

tðup−1 þ upþ1Þ þ gχpðβÞup ¼ ðEþ 2λ cosh βÞup: ð7Þ
Where we have defined the on site potential χpðβÞ as

χpðβÞ ¼
sinh β

cosh β − cosð2πpbþ ϕÞ ¼
X

∞

r¼−∞
e−βjrjeirð2πpbþϕÞ;

ð8Þ

with 1=α ¼ cosh β for α > 0, t > 0, and λ > 0. We can
absorb the sign of α and t as a redundant phase shift in the
cosine term. Note that by definition, a change in the sign of
λ can be absorbed as a phase only in combination with
the change in sign of α. We restore all the sign dependence
of the duality condition at the end of our calculation.
The parameter g is model dependent and is given by g ¼
2λ cosh β= tanh β for the on site potential defined in Eq. (2)
and g ¼ 2λð1þ cosh βÞ= sinh β for the on site potential in
Eq. (6). The above parametrization will help us to identify
the hidden duality symmetry of this model. Note that
Eq. (7) can be deformed without breaking the duality
symmetry by making an arbitrary choice for the parameter
g≡ gðα; λÞ and E≡ Eðα; λ; tÞ to design several on site
potentials with exact mobility edges. In the following we
can set the overall phase ϕ ¼ 0 without loss of generality.
Now we define the following ansatz for the duality trans-
formation under which the model in Eq. (7) is self-dual:

fk ¼
X

mnp

ei2πbðkmþmnþnpÞχ−1n ðβ0Þup: ð9Þ

We define
P

n ≡P∞
n¼−∞ from hereon. We have defined β0

below Eq. (10). The above transformation can be viewed as
three independent transformations acting on up. In the
following, we show how these three transformations act on
the tight binding model in Eq. (7) resulting in the final tight
binding model for fk. We multiply Eq. (7) by ei2πbnp and,
performing a summation over p, we obtain

ωχ−1n ðβ0Þvn ¼ g
X

r

e−βjn−rjvr: ð10Þ

Here we have defined vn ¼
P

pe
i2πbnpup, 2t cosh β0 ¼

Eþ 2λ cosh β, and ω ¼ 2t sinh β0. Now we multiply
Eq. (10) by ei2πbmn and carry out summation over n.
The resulting equation can be rewritten in terms of wm ¼
P

ne
imð2πbnÞχ−1n ðβ0Þvn as

ωχ−1m ðβÞwm ¼ g
X

r

e−β0jm−rjwr: ð11Þ

Note that the above step is a generalized transformation
encoded in the definition of wm. This is the final operation
of our generalized transformation where we define
fk ¼

P

me
i2πbmkwm. In the final step, we multiply

Eq. (11) by ei2πbmk and sum over m to obtain the following
tight binding model for fk,

tðfkþ1 þ fk−1Þ þ g
sinh β
sinh β0

χkðβ0Þfk ¼ 2t cosh βfk: ð12Þ

We have derived the result we set out to prove. The above
tight binding model in terms of fk in Eq. (12) is explicitly
self-dual to the original tight binding model defined in
Eq. (7) if β0 ¼ β. This self-duality condition can be
expressed in terms of E, α, t, and λ, restoring the sign
dependence of the duality condition, we obtain our main
result,

αE ¼ 2sgnðλÞðjtj − jλjÞ; ð13Þ

which holds for α ∈ ð−1; 1Þ and ∀λ; t. Thus we have
proved the condition for self-duality, which we proposed
and numerically verified as defining the mobility edge of
a localization transition.
Experimental design.—Quasiperiodic 1D lattices have

been realized in ultracold atoms [Bose-Einstein condensate
(BEC) of K39 atoms] by a standing wave arrangement of
two laser beams with mutually incommensurate wave
vector [18]. The quasiperiodic potentials considered in
this Letter can be systematically engineered by a controlled
application of a series of standing wave laser beams. The
experimental schematic becomes transparent by consider-
ing the cosine Fourier series of the on site potential defined
in Eqs. (2) and (6),

Vnðβ;ϕÞ ¼
a0ðβÞ
2

þ
X

∞

r¼1

arðβÞ cos½rð2πnbþ ϕÞ�; ð14Þ

where the coefficients are given by a0 ¼ −4λ cosh β,
ar ¼ 2ge−βr. Note that g is an overall model dependent
constant defined in Eq. (7). The r ¼ 1 term is the AAH
term which has been realized by a standing wave laser of
wave vector k1 superimposed on the underlying lattice
potential generated by another standing wave laser beam of
wave vector k2 [18,19]. The incommensuration parameter
is defined by the wave vector ratio b ¼ k1=k2. The r > 1
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terms can be realized by simply adding a series of standing
wave laser beams with a wave vector that is an integer
multiple of k1. The intensity of the rth harmonic laser beam
is determined by the coefficient ar. For a small value of
α (large β), the Fourier series can be truncated with few
Fourier components. The mobility edge is extremely
pronounced even for small values of α if we fine tune
the model parameters to the critical AAH model (jλj ¼ jtj).
As shown in Figs. 1(b) and 2(b), even an infinitesimal α
manifests a sharp mobility edge. Experiments should trace
both static (momentum distribution of a stationary state)
and dynamical (diffusion dynamics) properties of the
localized BEC condensate to demonstrate a clear localiza-
tion transition. In addition to ultracold atoms, the locali-
zation of the AAH model was also observed in
quasiperiodic photonic waveguides. For this setup, the
localization is quantified by directly monitoring the IPR
of the injected wave packet [13,16].
Conclusion.—In this work we have analytically demon-

strated the surprising existence of a mobility edge in a wide
class of 1D nearest neighbor tight binding models with
quasiperiodic on site potentials. We show that the analytical
critical condition is in excellent agreement with the
localization properties obtained from the numerical com-
putation of IPR and TDOS. We outlined a concrete design
schematic and observation methodology of our results
within existing experimental setups.
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