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Using state-of-the-art many-body calculations based on the “GW plus cumulant” approach, we show that
electron-plasmon interactions lead to the emergence of plasmonic polaron bands in the band structures of
common semiconductors. Using silicon and group IV transition-metal dichalcogenide monolayers (AX2 with
A ¼ Mo,W and X ¼ S, Se) as prototypical examples, we demonstrate that these new bands are a general
feature of systems characterized by well-defined plasmon resonances. We find that the energy versus
momentum dispersion relations of these plasmonic structures closely follow the standard valence bands,
although they appear broadened and blueshifted by the plasmon energy. Based on our results, we identify
general criteria for observing plasmonic polaron bands in the angle-resolved photoelectron spectra of solids.
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Electron-boson interactions are pervasive in many-body
physics, and the resulting quasiparticles are clear examples
of emergent behavior in quantum matter. While in the case
of phonons and magnons the fingerprints of their inter-
actions with electrons in angle-resolved photoemission
spectra (ARPES) are largely understood [1], much less
is known about electron-plasmon interactions. A detailed
and quantitative description of these interactions is key to
refine our understanding of electronic excitations in con-
densed matter and could provide new pathways towards
plasmon-assisted band-gap tuning [2], or the manipulation
of plasmon polaritons, with potential implications for
photonics and plasmonics [3].
In ARPES, the acceleration of a photo-electron upon

photon absorption may trigger shake-up excitations in the
sample, leading to the emission of phonons, electron-hole
pairs, and plasmons, the latter being collective charge-
density fluctuations [4]. Intuitively, if a photon excites both
a hole and a plasmon, the ARPES signal should exhibit
spectral weight at energies corresponding to the sum of the
binding energy of the electron and the excitation energy of
the plasmon, as obtained, for example, by electron energy
loss spectroscopy (EELS) [5]. This phenomenology is
analogous to the emergence of “peak-dip-hump” structures
in ARPES as a result of electron-phonon interactions
[1,6–11]; the difference between the resulting spectral
features arises from the characteristic energy of the boson
(∼10 meV for phonons, ∼10 eV for plasmons). In fact, the
very first model of electron-plasmon interactions [4,12,13] is
formally equivalent to the electron-phonon Hamiltonian
developed for the polaron problem [14]. In this model,
the electron-plasmon interaction results in “plasmonic polar-
ons” [15], in complete analogy with the polarons of the
ordinary theory of electron-phonon interactions [16].
Identifying plasmonic polarons in ARPES spectra is

notoriously difficult. While plasmonic satellites have been
successfully identified in the integrated photoemission

spectra of Na [17] and Si [18], the identification of energy
versus momentum dispersions of plasmonic polarons in
angle-resolved spectra has proven considerably more
challenging [19]. So far, such dispersions have been
observed only in the case of graphene and only in a narrow
region of the Brillouin zone around the Dirac point [20,21].
Key factors hindering the observation of the dispersion
relations of plasmonic polarons are (i) the energy scale of
the plasmon energy, which requires using energetic photons
at the expense of momentum resolution, (ii) the increased
phase space for electron-phonon scattering and electron-
hole pair generation, which adds to the spectral broadening,
and (iii) the possible mixup of weak plasmonic satellites
and strong quasiparticle peaks.
In this work, we perform state-of-the-art first-principles

calculations to show that electron-plasmon interactions lead
to the formation of plasmonic-polaron band-structure
replica. These new structures appear as broadened copies
of the valence bands shifted by the plasmon energy. Using a
combination of many-body perturbation theory in the GW
approximation [22–24] and the cumulant expansion
approach [4,13,17,18,25–29], we demonstrate the presence
of plasmonic-polaron bands in silicon. We further show that
two-dimensional group IV transition-metal dichalcogenides
(TMDs) AX2 with A ¼ Mo, W and X ¼ S, Se [30,31]
provide an ideal playground for the experimental observa-
tion of these novel spectroscopic signatures of the electron-
plasmon coupling.
Within the sudden approximation, the photocurrent mea-

sured in ARPES experiments is proportional to the electron
spectral function Aðk;ωÞ [1,32], where k is the crystal
momentum of the electron andω its binding energy (here and
in the following, atomic units are understood). The spectral
function can be calculated by using the cumulant expansion
[4,13,17,18,26]: The electron Green’s function is expanded
in terms of the screened Coulomb interactionW, and a subset
of diagrams is evaluated to all orders of perturbation [4]. This
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strategy leads to a more accurate treatment of dynamical
correlation as compared to the standard GW approximation
[22]. The cumulant expansion draws from the exact solution
of the polaron problem [16] and was originally applied to
study plasmon satellites in core-level spectra [13].
Importantly, it is also valid in the case of valence electrons,
as the effects of electron recoil (change of electron momen-
tum) upon plasmon emission tend to cancel out [4].
In this work, we use the formulation of the cumulant

expansion given by [4] and [17], which we will refer to as
the GW þ CAHK approach. In this formulation, only the
first cumulant is retained in order to describe the line shape
of quasiparticles and one-plasmon excitations. The case of
n-plasmon excitations (n ≥ 2) is of little interest here since
the corresponding spectral signatures are damped by the
Lang-Firsov factor an=n!, with a the average number of
plasmons around the hole [13]. The GW þ CAHK spectral
function can be expressed as [17]

Aðk;ωÞ ¼
X

n

½AQP
n ðk;ωÞ þ AQP

n ðk;ωÞAC
n ðk;ωÞ�: ð1Þ

Here AQP
n denotes the quasiparticle contribution to the

G0W0 spectral function:

AQP
n ðk;ωÞ ¼ 1

π

jΣ00
nkðεnkÞj

½ω − εnk − Σ0
nkðεnkÞ�2 þ ½Σ00

nkðεnkÞ�2
; ð2Þ

where Σ0 ðΣ00Þ indicates the real (imaginary) part of the
G0W0 self-energy [22,23], and εnk the Kohn-Sham eigen-
value. In Eq. (2), it is assumed that the off-diagonal
elements of the self-energy are small and can be neglected,
as is typically the case [23,33]. The term AC

n in Eq. (1) is
defined as [17]

AC
n ðk;ωÞ ¼

βnkðωÞ − βnkðεnkÞ − ðω − εnkÞ∂βnk∂ω jεnk
ðω − εnkÞ2

; ð3Þ

where βnkðωÞ ¼ π−1Σ00
nkðωÞθðμ − ωÞ, μ being the chemical

potential. This term accounts for interactions between the
photo-hole and one-plasmon excitations [32], and its
contribution to the spectral function in Eq. (2) is to be
identified with plasmonic polarons.
Using Eqs. (1)–(3), we now investigate the signatures of

plasmonic polarons in silicon. In Figs. 1(a) and 1(b), we
report the angle-resolved spectral function of silicon
obtained from the Sternheimer-G0W0 approach (SGW)
and SGW plus cumulant (SGW þ CAHK), respectively.
Details on SGW are provided in Refs. [34,39,40]. For
silicon, the experimental (integrated) photoemission spec-
trum shown in Fig. 1(c) is characterized by a broadened
plasmonic resonance covering approximately the energy
range from 16 eV to 30 eV below the Fermi energy. In this
resonance, we can clearly identify three distinct structures
(dashed blue lines). The bright energy bands visible in
Fig. 1(a) for binding energies between 0 and 12 eV
correspond to the standard quasiparticle peaks. These peaks

result from photoionization processes occurring in the
absence of plasmon excitations, and they define the
ordinary valence band structure of silicon. In addition to
the quasiparticle features, the spectral function exhibits a
rich structure at binding energies between 15 and 30 eV.
These structures can be identified with plasmonic polarons.
These features are present already at the G0W0 level;
however, their energy range is largely overestimated and,
thus, not compatible with the plasmonic features observed
in XPS. The inclusion of the cumulant correction in
SGW þ CAHK moves the plasmonic polaron resonances
to lower binding energies, improving the agreement with
the experimental spectrum significantly. This improvement
reflects the inclusion of higher-order exchange-correlation
diagrams in the GW þ CAHK Green function, as discussed
in more detail in Ref. [34].
Unexpectedly, plasmonic polarons exhibit dispersion

relations which follow closely the ordinary band structure
resulting from the quasiparticle peaks. The striking sim-
ilarity between the dispersion of the valence bands and the
plasmonic structures suggests that we are looking at band
structures of plasmonic polarons. Plasmonic polaron bands
appear as blueshifted replicas of the ordinary valence
bands, but they are considerably broader and less intense.
The comparison of Figs. 1(b) and 1(c) suggests that the
plasmon satellite of silicon [18] results from the momentum
average of plasmonic polaron bands over the first Brillouin
zone. For quasiparticles, it is well known that the density of
states is characterized by singularities (known as van Hove
singularities) at the energies for which the first momentum
derivative of the quasiparticle bands vanishes (∇kεk ¼ 0).
Correspondingly, peaks in the density of states can be
associated with extremal points of quasiparticle bands.

FIG. 1 (color online). Angle-resolved spectral function of
silicon on a logarithmic scale for wave vectors along the Γ-X
high-symmetry line, evaluated using (a) the Sternheimer-GW
method (SGW) and (b) the SGW plus cumulant (SGW þ CAHK)
approach. (c) Measured x-ray photoemission spectrum of silicon
(XPS) from Ref. [18]. The blue dashed lines indicate the three
features discussed in the main text.
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Figures 1(b) and 1(c) indicate that van Hove singularities
may also have a plasmonic origin. In particular, the two
experimental peaks at 20.4 eVand 24.5 eVand the shoulder
at 27.3 eV [labeled as 1–3 in Fig. 1(c)] can be attributed to
the vanishing of the first momentum derivative of the
plasmonic polaron bands in Fig. 1(b).
Owing to the large plasmon energy, the experimental

observation of plasmonic polaron bands in silicon may be
hindered by the low resolution of ARPES measurements
well below the Fermi energy. In order to identify materials
in which such polaron bands may be observed, in the
following we focus on group IV transition-metal dichalco-
genides (MoS2, WS2, MoSe2, and WSe2). The EELS
spectra of the three-dimensional parent compounds exhibit
two distinct features around 8 eVand 22 eV, corresponding
to the excitation of π and π þ σ plasmons, respectively
[41,42]. Since the width of the bands arising from
transition-metal d states and chalcogen p states in these
compounds is approximately 7 eV [43], possible plasmonic
polarons are expected to appear between 8 and 15 eV. In
this energy range, the deep S-3s or Se-4s bands, located
between 12 and 15 eV [43], dominate the spectral function,
thereby also hindering the identification of plasmonic
polarons in ARPES in this case.
At variance with this scenario, in the case of monolayer

TMDs, both experimental [44] and theoretical [45] studies
reported plasmonic peaks in the EELS spectra which are
strongly redshifted with respect to their bulk counterpart.
For example, in the case of MoS2 and WS2 monolayers, the
π plasmons are found at energies around 6 eV. We thus
expect to observe plasmonic polarons at binding energies
between 6 and 13 eV. Since this energy window matches
the band structure gap between the metal-d=chalcogen-p
bands and the chalcogen s bands, such plamonic polarons
should be distinctly observable.

To examine this possibility on quantitative grounds, we
calculate theGW þ CAHK spectral functions of TMDs from
first principles [46]. In order to contain the computational
cost, we describe the screening by introducing a two-pole
approximation for the inverse dielectric matrix, as dis-
cussed in Ref. [34].
Figure 2(a) shows the complete GW þ CAHK spectral

function of monolayer MoS2 evaluated along the Γ-M high-
symmetry line. At binding energies between 0-5 eV and
10-15 eV, the spectral function of monolayer MoS2 exhibits
the standard quasiparticle peaks. As in the case of silicon, in
monolayer MoS2 plasmonic polarons introduce new spec-
tral features in a binding energy range where quasiparticle
states are absent. To characterize these new features, we
analyze their energy versus wave vector dispersions using
a Lorentzian decomposition of the energy profiles. This
analysis allows us to disentangle the contributions of
plasmonic polarons from the quasiparticle excitations.
Figures 2(b) and 2(d) show the plasmonic polarons
corresponding to the emission of a photoelectron and the
simultaneous excitation of a π or π þ σ plasmon, respec-
tively. As for silicon, plasmonic polarons exhibit a clear
energy-momentum dispersion relation that leads to the
formation of blueshifted replica of the valence band struc-
ture. In particular, we find two replicas of the valence bands
of monolayer MoS2, one associated with the π plasmon
centered around the binding energy ∼8 eV, and another one
associated with the π þ σ plasmon around 19 eV.
Owing to the approximate treatment of electron recoil

effects in the cumulant approach [4,18], the actual broad-
ening might be even larger than in the present calculations.
In order to understand whether plasmonic polaron bands
could be observed in ARPES experiments, it is therefore
essential to quantify their spectral weight. A reliable
measure of the intensity of the plasmonic bands can be

FIG. 2 (color online). (a) Complete angle-resolved spectral function of monolayer MoS2 on a logarithmic scale for wave vectors along
the Γ-M high-symmetry line, evaluated using the GW þ CAHK approach. (b,d) Contributions of plasmonic polarons to the spectral
function in (a): π-plasmonic polarons (b) and ðπ þ σÞ-plasmonic polarons (d). (c) Quasiparticle band structure of monolayer MoS2
extracted from (a) (red solid lines), band structure of π-plasmonic polarons extracted from (b) (blue solid line), and band structure of
ðπ þ σÞ-plasmonic polarons from (d) (yellow solid line). Energies are referenced to the valence band top.
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obtained from the average number ank of plasmons emitted
during the photoemission process [32]: ank ¼ R

ω−2

βnkðωÞdω. In the case of the high-lying Mo-4d=S-3p
bands, we obtain ank in the range 0.08–0.12 for momenta
along the Γ-M line, whereas ank is found in the range
0.04–0.06 for the lower-lying S-3s bands. These results
indicate that the formation of plasmonic polarons provides
an important dissipation channel for the ARPES photo-
current. In particular, in the case of Mo-4dz2 states at the top
of the valence band (the most important for electron
transport in p-doped MoS2), every photo-hole is accom-
panied by 0.13 plasmons. These estimates are confirmed by
a direct integration of the spectral function, which shows
that plasmonic polarons carry, on average, 12% of the total
spectral weight of the valence electronic states. For the
valence states, the intensity ratio between the plasmonic
polaron band and the quasiparticle peak is ∼0.01–0.02. In
addition, by considering the metal-d=chalcogen-p bands
together, we find that, in the case of monolayer
MoS2, it should be possible to extract up to 1.2 ×
1014 electrons=cm2 (0.1 electrons=cell) at binding energies
inside the band structure gap between Mo-4d=
S-3p bands and S-3s bands.
At variance with the case of monolayer MoS2, for the

bulk compound our calculations indicate that the plasmonic
bands overlap substantially with the deep S-s states
(Fig. 3). The overlap between ordinary quasiparticle bands
and plasmonic polaron bands should make the experimen-
tal detection of these new features in bulk MoS2 much more
challenging than in the case of a monolayer.
The above results suggest that two key conditions need

to be satisfied for plasmonic polaron band structures to be
clearly observed in ARPES: (i) the existence of low-energy
plasmon excitations in the EELS spectrum and (ii) the
presence of a band gap in the valence band manifold.
Condition (ii) also contributes to minimizing spectral
broadening arising from electron-phonon scattering.

Given these “design rules,” it is natural to ask whether
there exist “optimal” TMDs for observing plasmonic
polaron bands. To answer this question, we repeated our
GW þ CAHK calculations for the related monolayer com-
pounds MoSe2, WS2, and WSe2. Figure 3 shows that
plasmonic polaron bands associated with π plasmons fit
inside the band gap between the metal-d=chalcogen-p
bands and the chalcogen-s bands for all these compounds.
In particular, we find that monolayer MoSe2 should provide
an ideal test bench for identifying plasmonic polarons
since, in this case, the plasmonic structures exhibit essen-
tially no overlap with the ordinary valence bands (Fig. 3).
Since the plasmon energy scales with the square root of

the static dielectric constant ϵ0, it should also be possible to
realize plasmonic band structure engineering in TMD
monolayers by modifying their dielectric screening proper-
ties. For example, this could be achieved by using different
substrates, by building van der Waals heterostructures of
TMDs [51], or by using doping [52] or mechanical
deformation [53,54]. All these modifications would leave
the ordinary valence band structure essentially unaffected
(on the eV scale) while producing significant shifts in the
binding energy of plasmonic polarons.
In conclusion, using state-of-the-art first-principles GW

plus cumulant calculations, we have shown that electron-
plasmon coupling leads to the formation of plasmonic
polaron band structures and that group IV transition-metal
dichalcogenide monolayers (in particular, monolayer
MoSe2) should provide a unique opportunity for observing
these new features in ARPES experiments. Remarkably, we
have found that these plasmonic band structures exhibit
dispersion relations which closely follow the ordinary
valence bands and, similarly to quasiparticle bands, lead
to the formation of van Hove singularities in the density of
states. More generally, plasmonic-polaron bands emerge as
novel spectroscopic signatures of electron-plasmon coupling,
which may contribute to unravel the complexity of ARPES
measurements. The emergence of plasmonic polarons is not
limited to semiconductors and may also prove useful to
rationalize the electronic structure of materials characterized
by well-defined plasmonic excitations, including, for exam-
ple, metals, as well as d- and f-electron systems [55,56]. In
fact, our work raises the question of whether the concept of
plasmonic polarons may be systematically employed in the
interpretation of ARPES spectra of complex systems. As an
example, while our work focused on the simplest case of
“isolated” plasmonic polaron bands, the crossing of plas-
monic bands and high-lying valence bands may reveal the
emergence of band-branching effects, in analogy with the
polaron problem in electron-phonon physics [57].

This work was supported by the Leverhulme Trust
(Grant No. RL-2012-001) and the European Research
Council (EU FP7/ERC Grant No. 239578 and EU FP7
Grant No. 604391 Graphene Flagship). Calculations were
performed at the Oxford Supercomputing Centre and at the
Oxford Materials Modelling Laboratory.

FIG. 3 (color online). Energy range of the quasiparticle bands
(blue boxes) and the π-plasmonic polaron bands in monolayer
MoS2, MoSe2, WS2, andWSe2, evaluated within theGW þ CAHK
approach (yellow boxes). Bulk MoS2 is included for comparison
(MoS2½b�). The topmost bands arise from the hybridization of
transition-metal d states and the chalcogenide p states (TM-d=
Ch-p); the low-energy ones arise from the chalcogenide s states
(Ch-s). The plasma energies ωπ are given in eV.
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